def load_images(path= "/fashion_mnist/data/fashion", kind='train'): mnist_path = os.getcwd() + path labels = ['t_shirt_top', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle_boots'] # reading the data using the utility function load_mnist # train_images, train_labels = load_mnist(mnist_path, kind='train') # t10k_images, t10k_labels = load_mnist(mnist_path, kind='t10k') # train_labels_str = image_class_to_str(train_labels) # t10k_labels_str = image_class_to_str(t10k_labels) return load_mnist(mnist_path, kind=kind)
from fashion_mnist.utils.mnist_reader import load_mnist import numpy as np import statistics as stat import matplotlib.pyplot as plt import math import pickle image, label = load_mnist('./fashion_mnist/data/mnist/') all_img = image.copy() all_lbl = label.copy() t_images, t_labels = load_mnist('./fashion_mnist/data/mnist/', kind='t10k') all_test_images = t_images.copy() all_test_labels = t_labels.copy() digit_type = [1, 8] # pos 1, negt 8 N = 2 # no. of classes cm_2 = np.zeros((N, N)) classes = list(range(N)) unq, cnt = np.unique( all_lbl, return_counts=True) # no. of data points of a class in training set unq1, cnt1 = np.unique( all_test_labels, return_counts=True) # no. of data points in test set of the same class print(unq, cnt) print(unq1, cnt1) class_priors = cnt / len(all_lbl) # cnt : No. of data points of each digit total_train_points = cnt[digit_type[0]] + cnt[digit_type[1]]
def load_mnist_dataset(): dir_loc = '/home/kamil/PycharmProjects/image-recognition-msid/fashion_mnist/data/fashion' train_set = mnist_reader.load_mnist(dir_loc, kind='train') test_set = mnist_reader.load_mnist(dir_loc, kind='t10k') return train_set, test_set
def get_data(): """ Get data ready to learn with. Returns ------- dict """ simple = False if simple: from sklearn.datasets import load_digits from sklearn.utils import shuffle digits = load_digits() x = [np.array(el).flatten() for el in digits.images] y = digits.target x = np.divide(x, 255.0) * 2 - 1 x, y = shuffle(x, y, random_state=0) from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42) data = { 'train': { 'X': x_train, 'y': y_train }, 'test': { 'X': x_test, 'y': y_test } } else: # from sklearn.datasets import fetch_mldata from sklearn.utils import shuffle # mnist = fetch_mldata("MNIST original") # x = mnist.data # y = mnist.target # x = x / 255.0 * 2 - 1 # # x, y = shuffle(x, y, random_state=0) # # from sklearn.cross_validation import train_test_split # # x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42) X_train, y_train = m_reader.load_mnist('fashion_mnist/data/fashion', kind='train') X_test, y_test = m_reader.load_mnist('fashion_mnist/data/fashion', kind='t10k') X_test = X_test / 255.0 * 2 - 1 X_train = X_train / 255.0 * 2 - 1 data = { 'train': { 'X': X_train, 'y': y_train }, 'test': { 'X': X_test, 'y': y_test } } return data
from vis.visualization import visualize_activation from vis.utils import utils config=tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config)) batch_size = 400 num_classes = 10 epochs = 20 # input image dimensions img_rows, img_cols = 28, 28 # the data, shuffled and split between train and test sets x_train, y_train = mnist_reader.load_mnist('fashion_mnist/data/fashion', kind='train') x_test, y_test = mnist_reader.load_mnist('fashion_mnist/data/fashion', kind='t10k') if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255
from io import BytesIO from timeit import default_timer as timer import numpy as np import tmap as tm from faerun import Faerun from PIL import Image from fashion_mnist.utils import mnist_reader # Coniguration for the tmap layout CFG = tm.LayoutConfiguration() CFG.node_size = 1 / 55 # Load fashion mnist data IMAGES_TRAIN, LABELS_TRAIN = mnist_reader.load_mnist( "fashion_mnist/data/fashion", kind="train") IMAGES_TEST, LABELS_TEST = mnist_reader.load_mnist( "fashion_mnist/data/fashion", kind="t10k") IMAGES = np.concatenate((IMAGES_TRAIN, IMAGES_TEST)) LABELS = np.concatenate((LABELS_TRAIN, LABELS_TEST)) IMAGE_LABELS = [] def main(): """ Main function """ # Initialize and configure tmap dims = 1024 enc = tm.Minhash(28 * 28, 42, dims) lf = tm.LSHForest(dims * 2, 128)
learning_rate = 7e-3 batch_size = 256 n_epochs = 100 n_train = None n_test = None lamda = 0 # Step 1: Read in data fmnist_folder = './fashion_mnist' #Create dataset load function [Refer fashion mnist github page for util function] #Create train,validation,test split #train, val, test = utils.read_fmnist(fmnist_folder, flatten=True) # Step 2: Create datasets and iterator # create training Dataset and batch it x_train,y_train = load_mnist(os.path.join("fashion_mnist","data","fashion"),"train") x_train=x_train/255.0 x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.2, random_state=random_seed) print(x_train.shape,y_train.shape) n_train = x_train.shape[0] print(x_val.shape,y_val.shape) # create testing Dataset and batch it x_test,y_test = load_mnist(os.path.join("fashion_mnist","data","fashion"),"t10k") x_test=x_test/255.0 print(x_test.shape,y_test.shape) n_test = x_test.shape[0]