true_ns = [] ra = [] dec = [] gammaList = [] mean_ninj = [] flux_list = [] true_ras = [] true_decs = [] seed_counter = 0 for gamma in gammas: f = FastResponseAnalysis(cascade_healpy_file, start, stop, save=False, alert_event=True, smear=False, alert_type='cascade') inj = f.initialize_injector(gamma=gamma) scale_arr = [] step_size = 10 for i in range(1, 20 * step_size + 1, step_size): scale_arr.append([]) for j in range(5): scale_arr[-1].append(inj.sample(i, poisson=False)[0][0]) scale_arr = np.median(scale_arr, axis=1) try: scale_factor = np.min(np.argwhere(scale_arr > 0)) * step_size + 1. except: print("Scale factor thing for prior injector didn't work")
h=True, verbose=False) skymap_header = {name: val for name, val in skymap_header} ev_mjd = skymap_header['EVENTMJD'] ev_run, ev_id = skymap_header['RUNID'], skymap_header['EVENTID'] source = {"Skipped Events": [(ev_run, ev_id)]} source['Name'] = "RUN {} EVENT {} time window {:.2e}".format( str(skymap_header['RUNID']), str(skymap_header['EVENTID']), args.deltaT) source['alert_type'] = 'track' deltaT = args.deltaT / 86400. event_mjd = ev_mjd start_mjd = event_mjd - (deltaT / 2.) stop_mjd = event_mjd + (deltaT / 2.) start = Time(start_mjd, format='mjd').iso stop = Time(stop_mjd, format='mjd').iso f = FastResponseAnalysis(skymap_files[args.index], start, stop, save=False, alert_event=True, smear=args.smear, **source) inj = f.initialize_injector( gamma=2.5) #just put this here to initialize f.spatial_prior ts = f.unblind_TS() smear_str = 'smeared/' if args.smear else 'norm_prob/' res = f.save_results(alt_path=output_paths + smear_str)
true_ns = [] ra = [] dec = [] gammaList = [] mean_ninj = [] flux_list = [] true_ras = [] true_decs = [] seed_counter = 0 for gamma in gammas: f = FastResponseAnalysis(skymap_files[args.index], start, stop, save=False, alert_event=True, smear=args.smear, alert_type='track') inj = f.initialize_injector(gamma=gamma) scale_arr = [] step_size = 10 for i in range(1, 20 * step_size + 1, step_size): scale_arr.append([]) for j in range(5): scale_arr[-1].append(inj.sample(i, poisson=False)[0][0]) scale_arr = np.median(scale_arr, axis=1) try: scale_factor = np.min(np.argwhere(scale_arr > 0)) * step_size + 1. except: print("Scale factor thing for prior injector didn't work")
+ 'fast-response/fast_response/cascades_results/skymaps/IceCube-Cascade' \ + '_{}_{}.hp'.format(int(run_id), int(event_id)) trials_per_sig = args.ntrials tsList_prior = [] nsList_prior = [] ra = [] dec = [] seed_counter = 0 f = FastResponseAnalysis(cascade_healpy_file, start, stop, save=False, alert_event=True, smear=False, alert_type='cascade') inj = f.initialize_injector( gamma=2.5) #just put this here to initialize f.spatial_prior for jj in range(trials_per_sig): seed_counter += 1 try: val = f.llh.scan(0.0, 0.0, scramble=True, seed=seed_counter, spatial_prior=f.spatial_prior, time_mask=[deltaT / 2., event_mjd],
final_args[name] = new_arg else: final_args[name] = argument print('') import logging as log from astropy.time import Time from astropy.coordinates import Angle import astropy.units as u from fast_response.FastResponseAnalysis import FastResponseAnalysis log.basicConfig(level=log.ERROR) source = final_args source['alert_event'] = args.alert_event ####################### INITIALIZE FAST RESPONSE OBJECT ####################### f = FastResponseAnalysis(source['Location'], source['Start Time'], source['Stop Time'], **source) # Point source, gw, etc. handling done in analysis object instantiation f.unblind_TS() f.plot_ontime() f.ns_scan() f.calc_pvalue(ntrials = args.ntrials) if not args.nodiag: f.make_dNdE() f.plot_tsd() f.upper_limit() results = f.save_results() f.generate_report() if args.document: subprocess.call(['cp','-r',results['analysispath'],
trials_per_sig = args.ntrials tsList_prior = [] tsList = [] nsList = [] nsList_prior = [] true_ns = [] ra = [] dec = [] seed_counter = 0 f = FastResponseAnalysis(skymap_files[args.index], start, stop, save=False, alert_event=True, smear=args.smear, alert_type='track') inj = f.initialize_injector( gamma=2.5) #just put this here to initialize f.spatial_prior for jj in range(trials_per_sig): seed_counter += 1 try: val = f.llh.scan(0.0, 0.0, scramble=True, seed=seed_counter, spatial_prior=f.spatial_prior, time_mask=[deltaT / 2., event_mjd], pixel_scan=[f.nside, 4.0],
skymap_files = glob( '/data/ana/realtime/alert_catalog_v2/2yr_prelim/fits_files/Run13*.fits.gz') start_mjd = 58484.0 stop_mjd = start_mjd + (args.deltaT / 86400.) start = Time(start_mjd, format='mjd').iso stop = Time(stop_mjd, format='mjd').iso deltaT = args.deltaT / 86400. trials_per_sig = args.ntrials seed_counter = args.seed f = FastResponseAnalysis(skymap_files[0], start, stop, save=False, alert_event=True) f.llh.nbackground = args.bkg * args.deltaT / 1000. #inj = f.initialize_injector(gamma=2.5) #just put this here to initialize f.spatial_prior #print f.llh.nbackground #results_array = [] npix = hp.nside2npix(f.nside) shape = (args.ntrials, npix) maps = sparse.lil_matrix(shape, dtype=float) for jj in range(trials_per_sig): seed_counter += 1 val = f.llh.scan( 0.0,