def test_create_variable(VariableMock): v = np.arange(0, 3) with mock.patch("fastai.core.IS_TORCH_04", True): core.create_variable(v, volatile=True) assert VariableMock.call_args[1] == {"requires_grad": False} with mock.patch("fastai.core.IS_TORCH_04", False): core.create_variable(v, volatile=True) assert VariableMock.call_args[1] == {"requires_grad": False, "volatile": True}
def test_create_variable_passing_Variable_object(): v = torch.autograd.Variable(core.T(np.arange(0, 3))) cv = core.create_variable(v, volatile=True) if core.IS_TORCH_04: assert (cv == v).all() else: assert cv is v
def image_loader(image_name: str, image_size: int): """load image, returns cuda tensor""" loader = get_loader(image_size) image = Image.open(image_name) image = loader(image).float() image = create_variable(image, True, requires_grad=False) image = image.unsqueeze(0) return image
def test_create_variable_passing_Variable_object(): v = torch.autograd.Variable(core.T(np.arange(0, 3))) assert core.create_variable(v, volatile=True) is v