def test_collate_data_function(): def f(x): return pd.read_csv(x).iloc[:10, :3] df = collate_data("tests/data/NASDAQ/data", function=f) assert len(df) == 80 assert df.shape == (80, 3)
def test_collate_data(): df = collate_data("tests/data/NASDAQ/data", parse_dates=["Date"]) df = df.rename(lambda x: x.lower(), axis="columns") df = df.sort_values(by=["date", "symbol"]) engine = create_engine("sqlite://") dl = DataLoader(directory="tests/data/NASDAQ/data", mode="SQL", engine=engine, tablename="eod") dl.load_data() df2 = pd.read_sql_table("eod", engine).sort_values(by=["date", "symbol"]) assert len(df) == len(df2) for i in range(100): assert compare(df, df2)
def test_collate_data(): df = collate_data('tests/data/NASDAQ/data', parse_dates=['Date']) df = df.rename(lambda x: x.lower(), axis='columns') df = df.sort_values(by=['date', 'symbol']) engine = create_engine('sqlite://') dl = DataLoader(directory='tests/data/NASDAQ/data', mode='SQL', engine=engine, tablename='eod') dl.load_data() df2 = pd.read_sql_table('eod', engine).sort_values(by=['date', 'symbol']) assert len(df) == len(df2) for i in range(100): assert compare(df, df2)
def test_collate_data_concat_false_two(): df = collate_data("tests/data/NASDAQ/data", function=lambda x: x.split("/")[-1], concat=False) assert len(df) == 8 assert "NASDAQ_20180731.zip" in df
def test_collate_data_concat_false_one(): def f(x): return pd.read_csv(x).iloc[:10, :3] df = collate_data("tests/data/NASDAQ/data", function=f, concat=False) assert len(df) == 8
def test_collate_data_concat_false_two(): df = collate_data('tests/data/NASDAQ/data', function=lambda x: x.split('/')[-1], concat=False) assert len(df) == 8 assert 'NASDAQ_20180731.zip' in df