def __init__(self) -> None:
        data_path = Path.cwd() / "data"
        if data_path.is_dir():
            shutil.rmtree(str(data_path))
        data_path.mkdir(exist_ok=False, parents=True)
        _, _, metadata = create_temp_data(data_path)

        def retrieve_metadata_mock(a: Any, fname: Any) -> Any:
            return metadata[str(fname)]

        # That's a bit flaky, we should be un-doing that after, but there's no obvious place of doing so.
        MonkeyPatch().setattr(SliceDataset, "_retrieve_metadata", retrieve_metadata_mock)

        mask = create_mask_for_mask_type(mask_type_str="equispaced",
                                         center_fractions=[0.08],
                                         accelerations=[4])
        # use random masks for train transform, fixed masks for val transform
        train_transform = VarNetDataTransform(mask_func=mask, use_seed=False)
        val_transform = VarNetDataTransform(mask_func=mask)
        test_transform = VarNetDataTransform()

        FastMriDataModule.__init__(self,
                                   data_path=data_path / "knee_data",
                                   challenge="multicoil",
                                   train_transform=train_transform,
                                   val_transform=val_transform,
                                   test_transform=test_transform)
예제 #2
0
def cli_main(args):
    pl.seed_everything(args.seed)

    # ------------
    # data
    # ------------
    # this creates a k-space mask for transforming input data
    mask = create_mask_for_mask_type(args.mask_type, args.center_fractions,
                                     args.accelerations)
    # use random masks for train transform, fixed masks for val transform
    train_transform = UnetDataTransform(args.challenge,
                                        mask_func=mask,
                                        use_seed=False)
    val_transform = UnetDataTransform(args.challenge, mask_func=mask)
    test_transform = UnetDataTransform(args.challenge)
    # ptl data module - this handles data loaders
    data_module = FastMriDataModule(
        data_path=args.data_path,
        challenge=args.challenge,
        train_transform=train_transform,
        val_transform=val_transform,
        test_transform=test_transform,
        test_split=args.test_split,
        test_path=args.test_path,
        sample_rate=args.sample_rate,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        distributed_sampler=(args.accelerator in ("ddp", "ddp_cpu")),
        proportion=args.proportion,
    )

    # ------------
    # model
    # ------------
    model = UnetModule(
        in_chans=args.in_chans,
        out_chans=args.out_chans,
        chans=args.chans,
        num_pool_layers=args.num_pool_layers,
        drop_prob=args.drop_prob,
        lr=args.lr,
        lr_step_size=args.lr_step_size,
        lr_gamma=args.lr_gamma,
        weight_decay=args.weight_decay,
    )

    # ------------
    # trainer
    # ------------
    trainer = pl.Trainer.from_argparse_args(args)

    # ------------
    # run
    # ------------
    if args.mode == "train":
        trainer.fit(model, datamodule=data_module)
    elif args.mode == "test":
        trainer.test(model, datamodule=data_module)
    else:
        raise ValueError(f"unrecognized mode {args.mode}")
예제 #3
0
 def __init__(self, in_chans, out_chans, dropout, decoder_channels, lr,
              lr_step_size, lr_gamma, weight_decay, data_path, batch_size,
              mask_type, center_fractions, accelerations, optim_eps):
     super().__init__()
     self.save_hyperparameters()
     self.in_chans = in_chans
     self.out_chans = out_chans
     self.decoder_channels = decoder_channels
     self.lr = lr
     self.lr_step_size = lr_step_size
     self.lr_gamma = lr_gamma
     self.weight_decay = weight_decay
     self.optim_eps = optim_eps
     self.net = ENet(in_channels=in_chans,
                     out_channels=out_chans,
                     decoder_channels=decoder_channels,
                     dropout=dropout)
     mask = create_mask_for_mask_type(mask_type, center_fractions,
                                      accelerations)
     train_transform = UnetDataTransform('singlecoil',
                                         mask_func=mask,
                                         use_seed=False)
     val_transform = UnetDataTransform('singlecoil', mask_func=mask)
     test_transform = UnetDataTransform('singlecoil')
     self.data_module = FastMriDataModule(data_path=pathlib.Path(data_path),
                                          challenge='singlecoil',
                                          train_transform=train_transform,
                                          val_transform=val_transform,
                                          test_transform=test_transform,
                                          test_split='test',
                                          test_path=None,
                                          sample_rate=1.0,
                                          batch_size=batch_size,
                                          num_workers=4,
                                          distributed_sampler=False)
예제 #4
0
def test_unet_trainer(fastmri_mock_dataset, backend, tmp_path, monkeypatch):
    knee_path, _, metadata = fastmri_mock_dataset

    def retrieve_metadata_mock(a, fname):
        return metadata[str(fname)]

    monkeypatch.setattr(SliceDataset, "_retrieve_metadata",
                        retrieve_metadata_mock)

    params = build_unet_args(knee_path, tmp_path, backend)
    params.fast_dev_run = True
    params.backend = backend

    mask = create_mask_for_mask_type(params.mask_type, params.center_fractions,
                                     params.accelerations)
    train_transform = UnetDataTransform(params.challenge,
                                        mask_func=mask,
                                        use_seed=False)
    val_transform = UnetDataTransform(params.challenge, mask_func=mask)
    test_transform = UnetDataTransform(params.challenge)
    data_module = FastMriDataModule(
        data_path=params.data_path,
        challenge=params.challenge,
        train_transform=train_transform,
        val_transform=val_transform,
        test_transform=test_transform,
        test_split=params.test_split,
        sample_rate=params.sample_rate,
        batch_size=params.batch_size,
        num_workers=params.num_workers,
        distributed_sampler=(params.accelerator == "ddp"),
        use_dataset_cache_file=False,
    )

    model = UnetModule(
        in_chans=params.in_chans,
        out_chans=params.out_chans,
        chans=params.chans,
        num_pool_layers=params.num_pool_layers,
        drop_prob=params.drop_prob,
        lr=params.lr,
        lr_step_size=params.lr_step_size,
        lr_gamma=params.lr_gamma,
        weight_decay=params.weight_decay,
    )

    trainer = Trainer.from_argparse_args(params)

    trainer.fit(model, data_module)
예제 #5
0
def get_dataloaders_fastmri(mask_type = 'random',
                            center_fractions  = [0.08],
                            accelerations = [4],
                            challenge = 'singlecoil',
                            batch_size = 8,
                            num_workers = 4,
                            distributed_bool = False,
                            dataset_dir = dataset_dir,
                            mri_dir = 'fastmri/knee/',
                            worker_init_fn = None,
                            include_test = False,
                            **kwargs):
    data_path = Path(os.path.join(dataset_dir, mri_dir))
    
    mask = create_mask_for_mask_type(mask_type_str = mask_type, 
                                     center_fractions = center_fractions, 
                                     accelerations = accelerations )
    

    # use random masks for train transform, fixed masks for val transform
    train_transform = UnetDataTransform(challenge, mask_func=mask, use_seed=False)
    val_transform = UnetDataTransform(challenge, mask_func=mask)
    test_transform = UnetDataTransform(challenge)

    # ptl data module - this handles data loaders
    data_module = FastMriDataModule(
        data_path= data_path,
        challenge= challenge,
        train_transform=train_transform,
        val_transform=val_transform,
        test_transform=test_transform,
        batch_size=batch_size,
        num_workers=num_workers,
        distributed_sampler = distributed_bool
    )



    if include_test:        
        dataloaders = {'train': data_module.train_dataloader() ,
                       'validation': data_module.val_dataloader(), 
                       'test': data_module.test_dataloader()}
    else:
        dataloaders = {'train': data_module.train_dataloader() ,
                       'validation': data_module.val_dataloader()}        

    return dataloaders
예제 #6
0
def get_fastmri_data_module(azure_dataset_id: str,
                            local_dataset: Optional[Path],
                            sample_rate: Optional[float],
                            test_path: str) -> LightningDataModule:
    """
    Creates a LightningDataModule that consumes data from the FastMRI challenge. The type of challenge
    (single/multicoil) is determined from the name of the dataset in Azure blob storage. The mask type is set to
    equispaced, with 4x acceleration.
    :param azure_dataset_id: The name of the dataset (folder name in blob storage).
    :param local_dataset: The local folder at which the dataset has been mounted or downloaded.
    :param sample_rate: Fraction of slices of the training data split to use. Set to a value <1.0 for rapid prototyping.
    :param test_path: The name of the folder inside the dataset that contains the test data.
    :return: A LightningDataModule object.
    """
    if not azure_dataset_id:
        raise ValueError("The azure_dataset_id argument must be provided.")
    if not local_dataset:
        raise ValueError("The local_dataset argument must be provided.")
    for challenge in ["multicoil", "singlecoil"]:
        if challenge in azure_dataset_id:
            break
    else:
        raise ValueError(
            f"Unable to determine the value for the challenge field for this "
            f"dataset: {azure_dataset_id}")

    mask = create_mask_for_mask_type(mask_type_str="equispaced",
                                     center_fractions=[0.08],
                                     accelerations=[4])
    # use random masks for train transform, fixed masks for val transform
    train_transform = VarNetDataTransform(mask_func=mask, use_seed=False)
    val_transform = VarNetDataTransform(mask_func=mask)
    test_transform = VarNetDataTransform()

    return FastMriDataModule(data_path=local_dataset,
                             test_path=local_dataset / test_path,
                             challenge=challenge,
                             sample_rate=sample_rate,
                             train_transform=train_transform,
                             val_transform=val_transform,
                             test_transform=test_transform)
예제 #7
0
def build_args():
    parser = ArgumentParser()

    # basic args
    path_config = pathlib.Path("../../fastmri_dirs.yaml")
    backend = "ddp"
    num_gpus = 2 if backend == "ddp" else 1
    batch_size = 1

    # set defaults based on optional directory config
    data_path = fetch_dir("knee_path", path_config)
    default_root_dir = fetch_dir("log_path",
                                 path_config) / "varnet" / "varnet_demo"

    # client arguments
    parser.add_argument(
        "--mode",
        default="train",
        choices=("train", "test"),
        type=str,
        help="Operation mode",
    )

    # data transform params
    parser.add_argument(
        "--mask_type",
        choices=("random", "equispaced"),
        default="equispaced",
        type=str,
        help="Type of k-space mask",
    )
    parser.add_argument(
        "--center_fractions",
        nargs="+",
        default=[0.08],
        type=float,
        help="Number of center lines to use in mask",
    )
    parser.add_argument(
        "--accelerations",
        nargs="+",
        default=[4],
        type=int,
        help="Acceleration rates to use for masks",
    )

    # data config
    parser = FastMriDataModule.add_data_specific_args(parser)
    parser.set_defaults(
        data_path=data_path,  # path to fastMRI data
        mask_type="equispaced",  # VarNet uses equispaced mask
        challenge="multicoil",  # only multicoil implemented for VarNet
        batch_size=batch_size,  # number of samples per batch
        test_path=None,  # path for test split, overwrites data_path
    )

    # module config
    parser = VarNetModule.add_model_specific_args(parser)
    parser.set_defaults(
        num_cascades=8,  # number of unrolled iterations
        pools=4,  # number of pooling layers for U-Net
        chans=18,  # number of top-level channels for U-Net
        sens_pools=4,  # number of pooling layers for sense est. U-Net
        sens_chans=8,  # number of top-level channels for sense est. U-Net
        lr=0.001,  # Adam learning rate
        lr_step_size=40,  # epoch at which to decrease learning rate
        lr_gamma=0.1,  # extent to which to decrease learning rate
        weight_decay=0.0,  # weight regularization strength
    )

    # trainer config
    parser = pl.Trainer.add_argparse_args(parser)
    parser.set_defaults(
        gpus=num_gpus,  # number of gpus to use
        replace_sampler_ddp=
        False,  # this is necessary for volume dispatch during val
        accelerator=backend,  # what distributed version to use
        seed=42,  # random seed
        deterministic=True,  # makes things slower, but deterministic
        default_root_dir=default_root_dir,  # directory for logs and checkpoints
        max_epochs=50,  # max number of epochs
    )

    args = parser.parse_args()

    # configure checkpointing in checkpoint_dir
    checkpoint_dir = args.default_root_dir / "checkpoints"
    if not checkpoint_dir.exists():
        checkpoint_dir.mkdir(parents=True)

    args.checkpoint_callback = pl.callbacks.ModelCheckpoint(
        filepath=args.default_root_dir / "checkpoints",
        save_top_k=True,
        verbose=True,
        monitor="validation_loss",
        mode="min",
        prefix="",
    )

    # set default checkpoint if one exists in our checkpoint directory
    if args.resume_from_checkpoint is None:
        ckpt_list = sorted(checkpoint_dir.glob("*.ckpt"), key=os.path.getmtime)
        if ckpt_list:
            args.resume_from_checkpoint = str(ckpt_list[-1])

    return args
예제 #8
0
def build_varnet_args(data_path, logdir, backend):
    parser = ArgumentParser()

    num_gpus = 0
    batch_size = 1

    # data transform params
    parser.add_argument(
        "--mask_type",
        choices=("random", "equispaced"),
        default="equispaced",
        type=str,
        help="Type of k-space mask",
    )
    parser.add_argument(
        "--center_fractions",
        nargs="+",
        default=[0.08],
        type=float,
        help="Number of center lines to use in mask",
    )
    parser.add_argument(
        "--accelerations",
        nargs="+",
        default=[4],
        type=int,
        help="Acceleration rates to use for masks",
    )

    # data config
    parser = FastMriDataModule.add_data_specific_args(parser)
    parser.set_defaults(
        data_path=data_path,
        mask_type="equispaced",
        challenge="multicoil",
        batch_size=batch_size,
    )

    # module config
    parser = VarNetModule.add_model_specific_args(parser)
    parser.set_defaults(
        num_cascades=4,
        pools=2,
        chans=8,
        sens_pools=2,
        sens_chans=4,
        lr=0.001,
        lr_step_size=40,
        lr_gamma=0.1,
        weight_decay=0.0,
    )

    # trainer config
    parser = Trainer.add_argparse_args(parser)
    parser.set_defaults(
        gpus=num_gpus,
        default_root_dir=logdir,
        replace_sampler_ddp=(backend != "ddp"),
        accelerator=backend,
    )

    parser.add_argument("--mode", default="train", type=str)

    args = parser.parse_args([])

    return args
예제 #9
0
def build_args():
    parser = ArgumentParser()

    # basic args
    path_config = pathlib.Path("../../fastmri_dirs.yaml")
    num_gpus = 0
    backend = "ddp_cpu"
    batch_size = 1 if backend == "ddp_cpu" else num_gpus

    # set defaults based on optional directory config
    data_path = fetch_dir("knee_path", path_config)
    default_root_dir = fetch_dir("log_path",
                                 path_config) / "unet" / "unet_demo"

    # client arguments
    parser.add_argument(
        "--mode",
        default="train",
        choices=("train", "test"),
        type=str,
        help="Operation mode",
    )

    # data transform params
    parser.add_argument(
        "--mask_type",
        choices=("random", "equispaced"),
        default="random",
        type=str,
        help="Type of k-space mask",
    )
    parser.add_argument(
        "--center_fractions",
        nargs="+",
        default=[0.08],
        type=float,
        help="Number of center lines to use in mask",
    )
    parser.add_argument(
        "--proportion",
        default=0.1,
        type=float,
        help="Proportion of label data",
    )
    parser.add_argument(
        "--accelerations",
        nargs="+",
        default=[4],
        type=int,
        help="Acceleration rates to use for masks",
    )

    # data config with path to fastMRI data and batch size
    parser = FastMriDataModule.add_data_specific_args(parser)
    parser.set_defaults(data_path=data_path,
                        batch_size=batch_size,
                        test_path=None)

    # module config
    parser = UnetModule.add_model_specific_args(parser)
    parser.set_defaults(
        in_chans=1,  # number of input channels to U-Net
        out_chans=1,  # number of output chanenls to U-Net
        chans=32,  # number of top-level U-Net channels
        num_pool_layers=4,  # number of U-Net pooling layers
        drop_prob=0.0,  # dropout probability
        lr=0.001,  # RMSProp learning rate
        lr_step_size=40,  # epoch at which to decrease learning rate
        lr_gamma=0.1,  # extent to which to decrease learning rate
        weight_decay=0.0,  # weight decay regularization strength
    )

    # trainer config
    parser = pl.Trainer.add_argparse_args(parser)
    parser.set_defaults(
        gpus=num_gpus,  # number of gpus to use
        replace_sampler_ddp=
        False,  # this is necessary for volume dispatch during val
        accelerator=backend,  # what distributed version to use
        seed=42,  # random seed
        deterministic=True,  # makes things slower, but deterministic
        default_root_dir=default_root_dir,  # directory for logs and checkpoints
        max_epochs=50,  # max number of epochs
    )

    args = parser.parse_args()

    # configure checkpointing in checkpoint_dir
    checkpoint_dir = args.default_root_dir / "checkpoints"
    if not checkpoint_dir.exists():
        checkpoint_dir.mkdir(parents=True)

    args.checkpoint_callback = pl.callbacks.ModelCheckpoint(
        dirpath=args.default_root_dir / "checkpoints",
        save_top_k=True,
        verbose=True,
        monitor="validation_loss",
        mode="min",
        prefix="",
    )

    # set default checkpoint if one exists in our checkpoint directory
    if args.resume_from_checkpoint is None:
        ckpt_list = sorted(checkpoint_dir.glob("*.ckpt"), key=os.path.getmtime)
        if ckpt_list:
            args.resume_from_checkpoint = str(ckpt_list[-1])

    return args
예제 #10
0
def build_args():
    parser = ArgumentParser()

    # basic args
    path_config = pathlib.Path("../../fastmri_dirs.yaml")
    batch_size = 1 if backend == "ddp" else num_gpus

    # set defaults based on optional directory config
    data_path = fetch_dir("knee_path", path_config)
    default_root_dir = fetch_dir("log_path", path_config) / "nnret" / "nnret_demo"

    # client arguments
    parser.add_argument(
        "--mode",
        default="train",
        choices=("train", "test"),
        type=str,
        help="Operation mode",
    )

    # data transform params
    parser.add_argument(
        "--mask_type",
        choices=("random", "equispaced"),
        default="random",
        type=str,
        help="Type of k-space mask",
    )
    parser.add_argument(
        "--center_fractions",
        nargs="+",
        default=[0.08],
        type=float,
        help="Number of center lines to use in mask",
    )
    parser.add_argument(
        "--accelerations",
        nargs="+",
        default=[4],
        type=int,
        help="Acceleration rates to use for masks",
    )

    # data config with path to fastMRI data and batch size
    parser = FastMriDataModule.add_data_specific_args(parser)
    parser.set_defaults(data_path=data_path, batch_size=batch_size, test_path=None)

    # module config
    parser = NnRetModule.add_model_specific_args(parser)
    parser.set_defaults(
        in_chans=1,  # number of input channels to NNRET
        out_chans=1,  # number of output chanenls to NNRET
        chans=32,  # number of top-level NNRET channels
        num_pool_layers=4,  # number of NNRET pooling layers
        drop_prob=0.0,  # dropout probability
        lr=0.001,  # RMSProp learning rate
        lr_step_size=40,  # epoch at which to decrease learning rate
        lr_gamma=0.1,  # extent to which to decrease learning rate
        weight_decay=0.0,  # weight decay regularization strength
    )

    # trainer config
    parser = pl.Trainer.add_argparse_args(parser)
    parser.set_defaults(
        gpus=num_gpus,  # number of gpus to use
        replace_sampler_ddp=False,  # this is necessary for volume dispatch during val
        accelerator=backend,  # what distributed version to use
        seed=42,  # random seed
        deterministic=True,  # makes things slower, but deterministic
        default_root_dir=default_root_dir,  # directory for logs and checkpoints
        max_epochs=1,  # max number of epochs
    )

    args = parser.parse_args()
    return args
예제 #11
0
def cli_main(args):
    pl.seed_everything(args.seed)

    # ------------
    # data
    # ------------
    # this creates a k-space mask for transforming input data
    mask = create_mask_for_mask_type(args.mask_type, args.center_fractions,
                                     args.accelerations)
    # use random masks for train transform, fixed masks for val transform
    train_transform = UnetDataTransform(args.challenge,
                                        mask_func=mask,
                                        use_seed=False)
    val_transform = UnetDataTransform(args.challenge, mask_func=mask)
    test_transform = UnetDataTransform(args.challenge)
    # ptl data module - this handles data loaders
    data_module = FastMriDataModule(
        data_path=args.data_path,
        challenge=args.challenge,
        train_transform=train_transform,
        val_transform=val_transform,
        test_transform=test_transform,
        test_split=args.test_split,
        test_path=args.test_path,
        sample_rate=args.sample_rate,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        distributed_sampler=(args.accelerator in ("ddp", "ddp_cpu")),
    )

    # ------------
    # model
    # ------------
    model = None
    if args.unet_module == "unet":
        model = UnetModule(
            in_chans=args.in_chans,
            out_chans=args.out_chans,
            chans=int(args.chans),
            num_pool_layers=args.num_pool_layers,
            drop_prob=args.drop_prob,
            lr=args.lr,
            lr_step_size=args.lr_step_size,
            lr_gamma=args.lr_gamma,
            weight_decay=args.weight_decay,
            optimizer=args.optmizer,
        )
    elif args.unet_module == "nestedunet":
        model = NestedUnetModule(
            in_chans=args.in_chans,
            out_chans=args.out_chans,
            chans=args.chans,
            num_pool_layers=args.num_pool_layers,
            drop_prob=args.drop_prob,
            lr=args.lr,
            lr_step_size=args.lr_step_size,
            lr_gamma=args.lr_gamma,
            weight_decay=args.weight_decay,
            optimizer=args.optmizer,
        )

    if args.device == "cuda" and not torch.cuda.is_available():
        raise ValueError(
            "The requested cuda device isn't available please set --device cpu"
        )

    pretrained_dict = torch.load(args.state_dict_file,
                                 map_location=args.device)
    model_dict = model.unet.state_dict()
    if args.unet_module == "unet":
        model_dict = {
            k: pretrained_dict["classy_state_dict"]["base_model"]["model"]
            ["trunk"]["_feature_blocks.unetblock." + k]
            for k, _ in model_dict.items()
        }
    elif args.unet_module == "nestedunet":
        model_dict = {
            k: pretrained_dict["classy_state_dict"]["base_model"]["model"]
            ["trunk"]["_feature_blocks.nublock." + k]
            for k, v in model_dict.items()
        }

    model.unet.load_state_dict(model_dict)

    # ------------
    # trainer
    # ------------
    trainer = pl.Trainer.from_argparse_args(args)

    # ------------
    # run
    # ------------
    output_filename = f"fine_tuned_{args.unet_module}.torch"
    output_model_filepath = f"{args.output_path}/{output_filename}"
    if args.mode == "train":
        trainer.fit(model, datamodule=data_module)
        print(f"Saving model: {output_model_filepath}")
        torch.save(model.state_dict(), output_model_filepath)
        print("DONE!")
    elif args.mode == "test":
        trainer.test(model, datamodule=data_module)
    else:
        raise ValueError(f"unrecognized mode {args.mode}")
예제 #12
0
def build_args():
    parser = ArgumentParser()
    batch_size = 1

    # client arguments
    parser.add_argument(
        "--mode",
        default="train",
        choices=("train", "test"),
        type=str,
        help="Operation mode",
    )

    # unet module arguments
    parser.add_argument(
        "--unet_module",
        default="unet",
        choices=("unet", "nestedunet"),
        type=str,
        help="Unet module to run with",
    )

    # data transform params
    parser.add_argument(
        "--mask_type",
        choices=("random", "equispaced"),
        default="random",
        type=str,
        help="Type of k-space mask",
    )
    parser.add_argument(
        "--center_fractions",
        nargs="+",
        default=[0.08],
        type=float,
        help="Number of center lines to use in mask",
    )
    parser.add_argument(
        "--accelerations",
        nargs="+",
        default=[4],
        type=int,
        help="Acceleration rates to use for masks",
    )
    parser.add_argument(
        "--device",
        default="cuda",
        type=str,
        help="Model to run",
    )
    parser.add_argument(
        "--state_dict_file",
        default=None,
        type=Path,
        help="Path to saved state_dict (will download if not provided)",
    )
    parser.add_argument(
        "--output_path",
        type=Path,  # directory for logs and checkpoints
        default=Path("./fine_tuning"),
        help="Path for saving reconstructions",
    )

    # unet specific
    parser.add_argument(
        "--in_chans",
        default=1,
        type=int,
        help="number of input channels to U-Net",
    )
    parser.add_argument(
        "--out_chans",
        default=1,
        type=int,
        help="number of output chanenls to U-Net",
    )
    parser.add_argument(
        "--chans",
        default=32,
        type=int,
        help="number of top-level U-Net channels",
    )
    # RMSProp parameters
    parser.add_argument(
        "--opt_drop_prob",
        default=0.0,
        type=float,
        help="dropout probability",
    )
    parser.add_argument(
        "--opt_lr",
        default=0.001,
        type=float,
        help="RMSProp learning rate",
    )
    parser.add_argument(
        "--opt_lr_step_size",
        default=10,
        type=int,
        help="epoch at which to decrease learning rate",
    )
    parser.add_argument(
        "--opt_lr_gamma",
        default=0.1,
        type=float,
        help="extent to which to decrease learning rate",
    )
    parser.add_argument(
        "--opt_weight_decay",
        default=0.0,
        type=float,
        help="weight decay regularization strength",
    )
    parser.add_argument(
        "--opt_optimizer",
        choices=("RMSprop", "Adam"),
        default="RMSprop",
        type=str,
        help="optimizer (RMSprop, Adam)",
    )

    # data config with path to fastMRI data and batch size
    parser = FastMriDataModule.add_data_specific_args(parser)
    parser.set_defaults(data_path="/home/ec2-user/mri",
                        batch_size=batch_size,
                        test_path=None)

    # trainer config
    parser = pl.Trainer.add_argparse_args(parser)
    parser.set_defaults(
        gpus=0,  # number of gpus to use
        replace_sampler_ddp=
        False,  # this is necessary for volume dispatch during val
        seed=42,  # random seed
        deterministic=True,  # makes things slower, but deterministic
        max_epochs=50,  # max number of epochs
        unet_module="unet",  # "unet" or "nestedunet"
    )

    args = parser.parse_args()

    # module config
    if args.unet_module == "unet":
        parser = UnetModule.add_model_specific_args(parser)
        parser.set_defaults(
            num_pool_layers=4,  # number of U-Net pooling layers
            drop_prob=args.opt_drop_prob,  # dropout probability
            lr=args.opt_lr,  # RMSProp learning rate
            lr_step_size=args.
            opt_lr_step_size,  # epoch at which to decrease learning rate
            lr_gamma=args.
            opt_lr_gamma,  # extent to which to decrease learning rate
            weight_decay=args.
            opt_weight_decay,  # weight decay regularization strength
            optmizer=args.opt_optimizer,  # optimizer (RMSprop, Adam)
            accelerator="ddp_cpu" if args.device == "cpu" else "ddp",
        )
    elif args.unet_module == "nestedunet":
        parser = NestedUnetModule.add_model_specific_args(parser)
        parser.set_defaults(
            num_pool_layers=4,  # number of U-Net pooling layers
            drop_prob=args.opt_drop_prob,  # dropout probability
            lr=args.opt_lr,  # RMSProp learning rate
            lr_step_size=args.
            opt_lr_step_size,  # epoch at which to decrease learning rate
            lr_gamma=args.
            opt_lr_gamma,  # extent to which to decrease learning rate
            weight_decay=args.
            opt_weight_decay,  # weight decay regularization strength
            optmizer=args.opt_optimizer,  # optimizer (RMSprop, Adam)
            accelerator="ddp_cpu" if args.device == "cpu" else "ddp",
        )

    args = parser.parse_args()

    # configure checkpointing in checkpoint_dir
    checkpoint_dir = args.output_path / "checkpoints"
    if not checkpoint_dir.exists():
        checkpoint_dir.mkdir(parents=True)

    args.checkpoint_callback = pl.callbacks.ModelCheckpoint(
        dirpath=args.output_path / "checkpoints",
        save_top_k=True,
        verbose=True,
        monitor="validation_loss",
        mode="min",
        prefix="",
    )

    # set default checkpoint if one exists in our checkpoint directory
    if args.resume_from_checkpoint is None:
        ckpt_list = sorted(checkpoint_dir.glob("*.ckpt"), key=os.path.getmtime)
        if ckpt_list:
            args.resume_from_checkpoint = str(ckpt_list[-1])

    return args