def __init__(self, cfg): super().__init__() self.register_buffer( "pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN).view(1, -1, 1, 1)) self.register_buffer( "pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD).view(1, -1, 1, 1)) self._cfg = cfg # backbone self.backbone = build_backbone(cfg) # head pool_type = cfg.MODEL.HEADS.POOL_LAYER if pool_type == 'avgpool': pool_layer = FastGlobalAvgPool2d() elif pool_type == 'maxpool': pool_layer = nn.AdaptiveMaxPool2d(1) elif pool_type == 'gempool': pool_layer = GeneralizedMeanPoolingP() elif pool_type == "avgmaxpool": pool_layer = AdaptiveAvgMaxPool2d() elif pool_type == "identity": pool_layer = nn.Identity() else: raise KeyError( f"{pool_type} is invalid, please choose from " f"'avgpool', 'maxpool', 'gempool', 'avgmaxpool' and 'identity'." ) in_feat = cfg.MODEL.HEADS.IN_FEAT num_classes = cfg.MODEL.HEADS.NUM_CLASSES self.heads = build_reid_heads(cfg, in_feat, num_classes, pool_layer)
def __init__(self, cfg): super().__init__() self._cfg = cfg # backbone self.backbone = build_backbone(cfg) # head if cfg.MODEL.HEADS.POOL_LAYER == 'avgpool': pool_layer = nn.AdaptiveAvgPool2d(1) elif cfg.MODEL.HEADS.POOL_LAYER == 'maxpool': pool_layer = nn.AdaptiveMaxPool2d(1) elif cfg.MODEL.HEADS.POOL_LAYER == 'gempool': pool_layer = GeneralizedMeanPoolingP() else: pool_layer = nn.Identity() in_feat = cfg.MODEL.HEADS.IN_FEAT num_classes = cfg.MODEL.HEADS.NUM_CLASSES self.heads = build_reid_heads(cfg, in_feat, num_classes, pool_layer)
def __init__(self, cfg): super().__init__() self.register_buffer("pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN).view(1, -1, 1, 1)) self.register_buffer("pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD).view(1, -1, 1, 1)) self._cfg = cfg # backbone self.backbone = build_backbone(cfg) # head if cfg.MODEL.HEADS.POOL_LAYER == 'avgpool': pool_layer = nn.AdaptiveAvgPool2d(1) elif cfg.MODEL.HEADS.POOL_LAYER == 'maxpool': pool_layer = nn.AdaptiveMaxPool2d(1) elif cfg.MODEL.HEADS.POOL_LAYER == 'gempool': pool_layer = GeneralizedMeanPoolingP() else: pool_layer = nn.Identity() in_feat = cfg.MODEL.HEADS.IN_FEAT num_classes = cfg.MODEL.HEADS.NUM_CLASSES self.heads = build_reid_heads(cfg, in_feat, num_classes, pool_layer)
def __init__(self, cfg): super().__init__() self.register_buffer( "pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN).view(1, -1, 1, 1)) self.register_buffer( "pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD).view(1, -1, 1, 1)) self._cfg = cfg # backbone bn_norm = cfg.MODEL.BACKBONE.NORM num_splits = cfg.MODEL.BACKBONE.NORM_SPLIT with_se = cfg.MODEL.BACKBONE.WITH_SE backbone = build_backbone(cfg) self.backbone = nn.Sequential(backbone.conv1, backbone.bn1, backbone.relu, backbone.maxpool, backbone.layer1, backbone.layer2, backbone.layer3[0]) res_conv4 = nn.Sequential(*backbone.layer3[1:]) res_g_conv5 = backbone.layer4 res_p_conv5 = nn.Sequential( Bottleneck(1024, 512, bn_norm, num_splits, False, with_se, downsample=nn.Sequential( nn.Conv2d(1024, 2048, 1, bias=False), get_norm(bn_norm, 2048, num_splits))), Bottleneck(2048, 512, bn_norm, num_splits, False, with_se), Bottleneck(2048, 512, bn_norm, num_splits, False, with_se)) res_p_conv5.load_state_dict(backbone.layer4.state_dict()) if cfg.MODEL.HEADS.POOL_LAYER == 'avgpool': pool_layer = nn.AdaptiveAvgPool2d(1) elif cfg.MODEL.HEADS.POOL_LAYER == 'maxpool': pool_layer = nn.AdaptiveMaxPool2d(1) elif cfg.MODEL.HEADS.POOL_LAYER == 'gempool': pool_layer = GeneralizedMeanPoolingP() else: pool_layer = nn.Identity() # head in_feat = cfg.MODEL.HEADS.IN_FEAT num_classes = cfg.MODEL.HEADS.NUM_CLASSES # branch1 self.b1 = nn.Sequential(copy.deepcopy(res_conv4), copy.deepcopy(res_g_conv5)) self.b1_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat) self.b1_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) # branch2 self.b2 = nn.Sequential(copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)) self.b2_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat) self.b2_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b21_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat) self.b21_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b22_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat) self.b22_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) # branch3 self.b3 = nn.Sequential(copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)) self.b3_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat) self.b3_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b31_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat) self.b31_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b32_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat) self.b32_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b33_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat) self.b33_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
def __init__(self, cfg): super().__init__() self._cfg = cfg assert len(cfg.MODEL.PIXEL_MEAN) == len(cfg.MODEL.PIXEL_STD) self.register_buffer( "pixel_mean", torch.tensor(cfg.MODEL.PIXEL_MEAN).view(1, -1, 1, 1)) self.register_buffer( "pixel_std", torch.tensor(cfg.MODEL.PIXEL_STD).view(1, -1, 1, 1)) # backbone self.teacher_net = build_backbone(cfg) self.student_net = build_backbone(cfg) self.D_Net = cam_Classifier(2048, 2).apply(weights_init_kaiming) if 'Dis_loss_cam' in self._cfg.MODEL.LOSSES.NAME: if "Hazy_DukeMTMC" in self._cfg.TDATASETS.NAMES: camid = int(8) elif "Hazy_Market1501" in self._cfg.TDATASETS.NAMES: camid = int(6) self.D_Net = CamClassifier(2048, camid) elif 'Dis_loss' in self._cfg.MODEL.LOSSES.NAME: if self._cfg.MODEL.PARAM.Dis_net == "cam_Classifier": self.D_Net = cam_Classifier(2048, 2).apply(weights_init_kaiming) elif self._cfg.MODEL.PARAM.Dis_net == "cam_Classifier_1024": self.D_Net = cam_Classifier_1024(2048, 2).apply(weights_init_kaiming) elif self._cfg.MODEL.PARAM.Dis_net == "cam_Classifier_1024_nobias": self.D_Net = cam_Classifier_1024_nobias( 2048, 2).apply(weights_init_kaiming) elif self._cfg.MODEL.PARAM.Dis_net == "cam_Classifier_fc": self.D_Net = cam_Classifier_fc(2048, 2).apply(weights_init_kaiming) elif self._cfg.MODEL.PARAM.Dis_net == "cam_Classifier_fc_nobias_in_last_layer": self.D_Net = cam_Classifier_fc_nobias_in_last_layer( 2048, 2).apply(weights_init_kaiming) self.D_Net = self.D_Net.to(torch.device(cfg.MODEL.DEVICE)) self.CrossEntropy_loss = nn.CrossEntropyLoss().to( torch.device(cfg.MODEL.DEVICE)) self.bn = nn.BatchNorm2d(2048) self.bn.bias.requires_grad_(False) self.bn.apply(weights_init_kaiming) # head pool_type = cfg.MODEL.HEADS.POOL_LAYER if pool_type == 'avgpool': pool_layer = FastGlobalAvgPool2d() elif pool_type == 'maxpool': pool_layer = nn.AdaptiveMaxPool2d(1) elif pool_type == 'gempool': pool_layer = GeneralizedMeanPoolingP() elif pool_type == "avgmaxpool": pool_layer = AdaptiveAvgMaxPool2d() elif pool_type == "identity": pool_layer = nn.Identity() else: raise KeyError( f"{pool_type} is invalid, please choose from " f"'avgpool', 'maxpool', 'gempool', 'avgmaxpool' and 'identity'." ) in_feat = cfg.MODEL.HEADS.IN_FEAT num_classes = cfg.MODEL.HEADS.NUM_CLASSES self.teacher_heads = build_reid_heads(cfg, in_feat, num_classes, pool_layer) self.student_heads = build_reid_heads(cfg, in_feat, num_classes, pool_layer)