예제 #1
0
 def save_pipelined_model(cls, job_id, role, party_id):
     schedule_logger(job_id).info(
         'job {} on {} {} start to save pipeline'.format(
             job_id, role, party_id))
     job_dsl, job_runtime_conf, train_runtime_conf = job_utils.get_job_configuration(
         job_id=job_id, role=role, party_id=party_id)
     job_parameters = job_runtime_conf.get('job_parameters', {})
     model_id = job_parameters['model_id']
     model_version = job_parameters['model_version']
     job_type = job_parameters.get('job_type', '')
     if job_type == 'predict':
         return
     dag = schedule_utils.get_job_dsl_parser(
         dsl=job_dsl,
         runtime_conf=job_runtime_conf,
         train_runtime_conf=train_runtime_conf)
     predict_dsl = dag.get_predict_dsl(role=role)
     pipeline = pipeline_pb2.Pipeline()
     pipeline.inference_dsl = json_dumps(predict_dsl, byte=True)
     pipeline.train_dsl = json_dumps(job_dsl, byte=True)
     pipeline.train_runtime_conf = json_dumps(job_runtime_conf, byte=True)
     pipeline.fate_version = RuntimeConfig.get_env("FATE")
     pipeline.model_id = model_id
     pipeline.model_version = model_version
     tracker = Tracker(job_id=job_id,
                       role=role,
                       party_id=party_id,
                       model_id=model_id,
                       model_version=model_version)
     tracker.save_pipelined_model(pipelined_buffer_object=pipeline)
     if role != 'local':
         tracker.save_machine_learning_model_info()
     schedule_logger(job_id).info(
         'job {} on {} {} save pipeline successfully'.format(
             job_id, role, party_id))
예제 #2
0
    def save_pipelined_model(cls, job_id, role, party_id):
        schedule_logger(job_id).info(
            'job {} on {} {} start to save pipeline'.format(
                job_id, role, party_id))
        job_dsl, job_runtime_conf, runtime_conf_on_party, train_runtime_conf = job_utils.get_job_configuration(
            job_id=job_id, role=role, party_id=party_id)
        job_parameters = runtime_conf_on_party.get('job_parameters', {})
        if role in job_parameters.get("assistant_role", []):
            return
        model_id = job_parameters['model_id']
        model_version = job_parameters['model_version']
        job_type = job_parameters.get('job_type', '')
        work_mode = job_parameters['work_mode']
        roles = runtime_conf_on_party['role']
        initiator_role = runtime_conf_on_party['initiator']['role']
        initiator_party_id = runtime_conf_on_party['initiator']['party_id']
        if job_type == 'predict':
            return
        dag = schedule_utils.get_job_dsl_parser(
            dsl=job_dsl,
            runtime_conf=job_runtime_conf,
            train_runtime_conf=train_runtime_conf)
        predict_dsl = dag.get_predict_dsl(role=role)
        pipeline = pipeline_pb2.Pipeline()
        pipeline.inference_dsl = json_dumps(predict_dsl, byte=True)
        pipeline.train_dsl = json_dumps(job_dsl, byte=True)
        pipeline.train_runtime_conf = json_dumps(job_runtime_conf, byte=True)
        pipeline.fate_version = RuntimeConfig.get_env("FATE")
        pipeline.model_id = model_id
        pipeline.model_version = model_version

        pipeline.parent = True
        pipeline.loaded_times = 0
        pipeline.roles = json_dumps(roles, byte=True)
        pipeline.work_mode = work_mode
        pipeline.initiator_role = initiator_role
        pipeline.initiator_party_id = initiator_party_id
        pipeline.runtime_conf_on_party = json_dumps(runtime_conf_on_party,
                                                    byte=True)
        pipeline.parent_info = json_dumps({}, byte=True)

        tracker = Tracker(job_id=job_id,
                          role=role,
                          party_id=party_id,
                          model_id=model_id,
                          model_version=model_version)
        tracker.save_pipelined_model(pipelined_buffer_object=pipeline)
        if role != 'local':
            tracker.save_machine_learning_model_info()
        schedule_logger(job_id).info(
            'job {} on {} {} save pipeline successfully'.format(
                job_id, role, party_id))
예제 #3
0
def get_fate_version_info():
    version = RuntimeConfig.get_env(request.json.get('module', 'FATE'))
    return get_json_result(data={request.json.get('module'): version})