def setup(): global model, x, y, z, inc, dec, struct_ind, field, xderiv, yderiv, \ zderiv, base, pos inc, dec = -30, 50 pos = np.array([1000, 1000, 200]) model = Sphere(pos[0], pos[1], pos[2], 1, {'magnetization': utils.ang2vec(10000, inc, dec)}) struct_ind = 3 shape = (128, 128) x, y, z = gridder.regular((0, 3000, 0, 3000), shape, z=-1) base = 10 field = utils.nt2si(sphere.tf(x, y, z, [model], inc, dec)) + base xderiv = fourier.derivx(x, y, field, shape) yderiv = fourier.derivy(x, y, field, shape) zderiv = fourier.derivz(x, y, field, shape)
bounds = [-5000, 5000, -5000, 5000, 0, 5000] model = [ Prism(-1500, -500, -500, 500, 1000, 2000, {'magnetization': 2})] # Generate some data from the model shape = (200, 200) area = bounds[0:4] xp, yp, zp = gridder.regular(area, shape, z=-1) # Add a constant baselevel baselevel = 10 # Convert from nanoTesla to Tesla because euler and derivatives require things # in SI tf = (utils.nt2si(prism.tf(xp, yp, zp, model, inc, dec)) + baselevel) # Calculate the derivatives using FFT xderiv = fourier.derivx(xp, yp, tf, shape) yderiv = fourier.derivy(xp, yp, tf, shape) zderiv = fourier.derivz(xp, yp, tf, shape) mpl.figure() titles = ['Total field', 'x derivative', 'y derivative', 'z derivative'] for i, f in enumerate([tf, xderiv, yderiv, zderiv]): mpl.subplot(2, 2, i + 1) mpl.title(titles[i]) mpl.axis('scaled') mpl.contourf(yp, xp, f, shape, 50) mpl.colorbar() mpl.m2km() mpl.show() # Run the Euler deconvolution on the whole dataset euler = Classic(xp, yp, zp, tf, xderiv, yderiv, zderiv, 3).fit() print "Base level used: %g" % (baselevel)
bounds = [-5000, 5000, -5000, 5000, 0, 5000] model = [ Prism(-1500, -500, -1500, -500, 500, 1500, {'density': 1000}), Prism(500, 1500, 1000, 2000, 500, 1500, {'density': 1000})] # Generate some data from the model shape = (100, 100) area = bounds[0:4] xp, yp, zp = gridder.regular(area, shape, z=-1) # Add a constant baselevel baselevel = 10 # Convert the data from mGal to SI because Euler and FFT derivation require # data in SI gz = utils.mgal2si(prism.gz(xp, yp, zp, model)) + baselevel xderiv = fourier.derivx(xp, yp, gz, shape) yderiv = fourier.derivy(xp, yp, gz, shape) zderiv = fourier.derivz(xp, yp, gz, shape) mpl.figure() titles = ['Gravity anomaly', 'x derivative', 'y derivative', 'z derivative'] for i, f in enumerate([gz, xderiv, yderiv, zderiv]): mpl.subplot(2, 2, i + 1) mpl.title(titles[i]) mpl.axis('scaled') mpl.contourf(yp, xp, f, shape, 50) mpl.colorbar() mpl.m2km() mpl.show() # Run the euler deconvolution on moving windows to produce a set of solutions euler = Classic(xp, yp, zp, gz, xderiv, yderiv, zderiv, 2) solver = MovingWindow(euler, windows=(10, 10), size=(2000, 2000)).fit()
""" from fatiando import mesher, gridder, utils from fatiando.gravmag import prism, fourier from fatiando.vis import mpl model = [mesher.Prism(-1000,1000,-1000,1000,0,2000,{'density':100})] area = (-5000, 5000, -5000, 5000) shape = (51, 51) z0 = -500 xp, yp, zp = gridder.regular(area, shape, z=z0) gz = utils.contaminate(prism.gz(xp, yp, zp, model), 0.001) # Need to convert gz to SI units so that the result can be converted to Eotvos gxz = utils.si2eotvos(fourier.derivx(xp, yp, utils.mgal2si(gz), shape)) gyz = utils.si2eotvos(fourier.derivy(xp, yp, utils.mgal2si(gz), shape)) gzz = utils.si2eotvos(fourier.derivz(xp, yp, utils.mgal2si(gz), shape)) gxz_true = prism.gxz(xp, yp, zp, model) gyz_true = prism.gyz(xp, yp, zp, model) gzz_true = prism.gzz(xp, yp, zp, model) mpl.figure() mpl.title("Original gravity anomaly") mpl.axis('scaled') mpl.contourf(xp, yp, gz, shape, 15) mpl.colorbar(shrink=0.7) mpl.m2km() mpl.figure(figsize=(14,10)) mpl.subplots_adjust(top=0.95, left=0.05, right=0.95) mpl.subplot(2, 3, 1)