예제 #1
0
# Calculate and print the standard deviation of the residuals
# Should be close to the data error if the inversion was able to fit the data
residuals = tomo.residuals()
print "Assumed error: %g" % (error)
print "Standard deviation of residuals: %g" % (np.std(residuals))

mpl.figure(figsize=(14, 5))
mpl.subplot(1, 2, 1)
mpl.axis('scaled')
mpl.title('Vp model')
mpl.squaremesh(model, prop='vp', cmap=mpl.cm.seismic)
cb = mpl.colorbar()
cb.set_label('Velocity')
mpl.points(src_loc, '*y', label="Sources")
mpl.points(rec_loc, '^r', label="Receivers")
mpl.legend(loc='lower left', shadow=True, numpoints=1, prop={'size': 10})
mpl.m2km()
mpl.subplot(1, 2, 2)
mpl.axis('scaled')
mpl.title('Tomography result')
mpl.squaremesh(mesh, prop='vp', vmin=4000, vmax=10000, cmap=mpl.cm.seismic)
cb = mpl.colorbar()
cb.set_label('Velocity')
mpl.m2km()
mpl.figure()
mpl.grid()
mpl.title('Residuals (data with %.4f s error)' % (error))
mpl.hist(residuals, color='gray', bins=10)
mpl.xlabel("seconds")
mpl.show()
예제 #2
0
# Should be close to the data error if the inversion was able to fit the data
residuals = tomo.residuals()
print "Assumed error: %g" % (error)
print "Standard deviation of residuals: %g" % (np.std(residuals))

mpl.figure(figsize=(14, 5))
mpl.subplot(1, 2, 1)
mpl.axis('scaled')
mpl.title('Vp model')
mpl.squaremesh(model, prop='vp', cmap=mpl.cm.seismic)
cb = mpl.colorbar()
cb.set_label('Velocity')
mpl.points(src_loc, '*y', label="Sources")
mpl.points(rec_loc, '^r', label="Receivers")
mpl.legend(loc='lower left', shadow=True, numpoints=1, prop={'size': 10})
mpl.m2km()
mpl.subplot(1, 2, 2)
mpl.axis('scaled')
mpl.title('Tomography result')
mpl.squaremesh(mesh, prop='vp', vmin=4000, vmax=10000,
               cmap=mpl.cm.seismic)
cb = mpl.colorbar()
cb.set_label('Velocity')
mpl.m2km()
mpl.figure()
mpl.grid()
mpl.title('Residuals (data with %.4f s error)' % (error))
mpl.hist(residuals, color='gray', bins=10)
mpl.xlabel("seconds")
mpl.show()