예제 #1
0
def init_path_geod(beta1, beta2, T=100, k=5):
    """
    Initializes a path in \cal{C}. beta1, beta2 are already
    standardized curves. Creates a path from beta1 to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    dist, pathq, O = geod_sphere(beta1, beta2, k)

    for tau in range(0, k):
        alpha[:, :, tau] = cf.project_curve(pathq[:, :, tau])
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T

    return (alpha, beta, O)
예제 #2
0
def sample_shapes(mu, K, mode='O', no=3, numSamp=10):
    """
    Computes sample shapes from mean and covariance

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param numSamp: number of samples (default 10)

    :rtype: tuple of numpy array
    :return samples: sample shapes

    """
    n, T = mu.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    if mode == 0:
        N = 2
    else:
        N = 10

    epsilon = 1./(N-1)

    samples = empty(numSamp, dtype=object)
    for i in range(0, numSamp):
        v = zeros((2, T))
        for m in range(0, no):
            v = v + randn()*sqrt(s[m])*vstack((U[0:T, m], U[T:2*T, m]))

        q1 = mu
        for j in range(0, N-1):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        samples[i] = cf.q_to_curve(q2)

    return(samples)
예제 #3
0
def curve_karcher_cov(betamean, beta, mode='O'):
    """
    This claculates the mean of a set of curves
    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param beta: numpy ndarray of shape (n, M, N) describing N curves
    in R^M
    :param mode: Open ('O') or closed curve ('C') (default 'O')

    :rtype: tuple of numpy array
    :return K: Covariance Matrix

    """
    n, T, N = beta.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    # Compute Karcher covariance of uniformly sampled mean
    betamean = cf.resamplecurve(betamean, T)
    mu = cf.curve_to_q(betamean)
    if mode == 1:
        mu = cf.project_curve(mu)
        basis = cf.find_basis_normal(mu)

    v = zeros((n, T, N))
    for i in range(0, N):
        beta1 = beta[:, :, i]

        w, dist = cf.inverse_exp_coord(betamean, beta1)
        # Project to the tangent sapce of manifold to obtain v_i
        if mode == 0:
            v[:, :, i] = w
        else:
            v[:, :, i] = cf.project_tangent(w, mu, basis)

    K = zeros((2*T, 2*T))

    for i in range(0, N):
        w = v[:, :, i]
        wtmp = w.reshape((T*n, 1), order='C')
        K = K + wtmp.dot(wtmp.T)

    K = K/(N-1)

    return(K)
예제 #4
0
def update_path(alpha, beta, gradE, delta, T=100, k=5):
    """
    Update the path along the direction -gradE

    :param alpha: numpy ndarray of shape (2,M) of M samples
    :param beta: numpy ndarray of shape (2,M) of M samples
    :param gradE: numpy ndarray of shape (2,M) of M samples
    :param delta: gradient paramenter
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy scalar
    :return alpha: updated path of srvfs
    :return beta: updated path of curves

    """
    for tau in range(1, k - 1):
        alpha_new = alpha[:, :, tau] - delta * gradE[:, :, tau]
        alpha[:, :, tau] = cf.project_curve(alpha_new)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T

    return (alpha, beta)
예제 #5
0
def curve_principal_directions(betamean, mu, K, mode='O', no=3, N=5):
    """
    Computes principal direction of variation specified by no. N is
    Number of shapes away from mean. Creates 2*N+1 shape sequence

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param N: number of shapes (2*N+1) (default 5)

    :rtype: tuple of numpy array
    :return pd: principal directions

    """
    n, T = betamean.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    qarray = empty((no, 2*N+1), dtype=object)
    qarray1 = empty(N, dtype=object)
    qarray2 = empty(N, dtype=object)
    pd = empty((no, 2*N+1), dtype=object)
    pd1 = empty(N, dtype=object)
    pd2 = empty(N, dtype=object)
    for m in range(0, no):
        princDir = vstack((U[0:T, m], U[T:2*T, m]))
        v = sqrt(s[m]) * princDir
        q1 = mu
        epsilon = 2./N

        # Forward direction from mean
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1 + sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray1[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd1[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        # Backward direction from mean
        v = -sqrt(s[m])*princDir
        q1 = mu
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray2[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd2[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        for i in range(0, N):
            qarray[m, i] = qarray2[(N-1)-i]
            pd[m, i] = pd2[(N-1)-i]

        qarray[m, N] = mu
        centroid1 = -1*cf.calculatecentroid(betamean)
        beta_scaled, scale = cf.scale_curve(betamean +
                                            tile(centroid1, [T, 1]).T)
        pd[m, N] = beta_scaled

        for i in range(N+1, 2*N+1):
            qarray[m, i] = qarray1[i-(N+1)]
            pd[m, i] = pd1[i-(N+1)]

    return(pd)
예제 #6
0
def curve_karcher_mean(beta, mode='O'):
    """
    This claculates the mean of a set of curves
    :param beta: numpy ndarray of shape (n, M, N) describing N curves
    in R^M
    :param mode: Open ('O') or closed curve ('C') (default 'O')

    :rtype: tuple of numpy array
    :return mu: mean srvf
    :return betamean: mean curve
    :return v: shooting vectors
    :return q: srvfs

    """
    n, T, N = beta.shape
    q = zeros((n, T, N))
    for ii in range(0, N):
        q[:, :, ii] = cf.curve_to_q(beta[:, :, ii])

    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    # Initialize mu as one of the shapes
    mu = q[:, :, 0]
    betamean = beta[:, :, 0]

    delta = 0.5
    tolv = 1e-4
    told = 5*1e-3
    maxit = 20
    itr = 0
    sumd = zeros(maxit+1)
    v = zeros((n, T, N))
    normvbar = zeros(maxit+1)

    while itr < maxit:
        print("Iteration: %d" % itr)

        mu = mu / sqrt(cf.innerprod_q2(mu, mu))

        sumv = zeros((2, T))
        sumd[itr+1] = 0
        out = Parallel(n_jobs=-1)(delayed(karcher_calc)(beta[:, :, n],
                                  q[:, :, n], betamean, mu, mode) for n in range(N))
        v = zeros((n, T, N))
        for i in range(0, N):
            v[:, :, i] = out[i][0]
            sumd[itr+1] = sumd[itr+1] + out[i][1]**2

        sumv = v.sum(axis=2)

        # Compute average direction of tangent vectors v_i
        vbar = sumv/float(N)

        normvbar[itr] = sqrt(cf.innerprod_q2(vbar, vbar))
        normv = normvbar[itr]

        if normv > tolv and fabs(sumd[itr+1]-sumd[itr]) > told:
            # Update mu in direction of vbar
            mu = cos(delta*normvbar[itr])*mu + sin(delta*normvbar[itr]) * vbar/normvbar[itr]

            if mode == 1:
                mu = cf.project_curve(mu)

            x = cf.q_to_curve(mu)
            a = -1*cf.calculatecentroid(x)
            betamean = x + tile(a, [T, 1]).T
        else:
            break

        itr += 1

    return(mu, betamean, v, q)
예제 #7
0
def init_path_rand(beta1, beta_mid, beta2, T=100, k=5):
    """
    Initializes a path in \cal{C}. beta1, beta_mid beta2 are already
    standardized curves. Creates a path from beta1 to beta_mid to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param betamid: numpy ndarray of shape (2,M) of M samples (mid curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    q1 = cf.curve_to_q(beta1)
    q_mid = cf.curve_to_q(beta_mid)

    # find optimal rotation of q2
    beta2, O1, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2)
    q2 = cf.curve_to_q(beta2)

    # find the optimal coorespondence
    gam = cf.optimum_reparam_curve(q2, q1)
    gamI = uf.invertGamma(gam)

    # apply optimal reparametrization
    beta2n = cf.group_action_by_gamma_coord(beta2, gamI)

    # find optimal rotation of q2
    beta2n, O2, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2n)
    centroid2 = cf.calculatecentroid(beta2n)
    beta2n = beta2n - tile(centroid2, [T, 1]).T
    q2n = cf.curve_to_q(beta2n)
    O = O1.dot(O2)

    # Initialize a path as a geodesic through q1 --- q_mid --- q2
    theta1 = arccos(cf.innerprod_q2(q1, q_mid))
    theta2 = arccos(cf.innerprod_q2(q_mid, q2n))
    tmp = arange(2, int((k - 1) / 2) + 1)
    t = zeros(tmp.size)
    alpha[:, :, 0] = q1
    beta[:, :, 0] = beta1

    i = 0
    for tau in range(2, int((k - 1) / 2) + 1):
        t[i] = (tau - 1.0) / ((k - 1) / 2.0)
        qnew = (1 / sin(theta1)) * (sin((1 - t[i]) * theta1) * q1 + sin(t[i] * theta1) * q_mid)
        alpha[:, :, tau - 1] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau - 1])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau - 1] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, int((k - 1) / 2)] = q_mid
    beta[:, :, int((k - 1) / 2)] = beta_mid

    i = 0
    for tau in range(int((k - 1) / 2) + 1, k - 1):
        qnew = (1 / sin(theta2)) * (sin((1 - t[i]) * theta2) * q_mid + sin(t[i] * theta2) * q2n)
        alpha[:, :, tau] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, k - 1] = q2n
    beta[:, :, k - 1] = beta2n

    return (alpha, beta, O)
예제 #8
0
    def karcher_mean(self, parallel=False, cores=-1):
        """
        This calculates the mean of a set of curves
        :param parallel: run in parallel (default = F)
        :param cores: number of cores for parallel (default = -1 (all))
        """
        n, T, N = self.beta.shape

        modes = ['O', 'C']
        mode = [i for i, x in enumerate(modes) if x == self.mode]
        if len(mode) == 0:
            mode = 0
        else:
            mode = mode[0]

        # Initialize mu as one of the shapes
        mu = self.q[:, :, 0]
        betamean = self.beta[:, :, 0]
        itr = 0

        gamma = zeros((T, N))
        maxit = 20

        sumd = zeros(maxit + 1)
        v = zeros((n, T, N))
        normvbar = zeros(maxit + 1)

        delta = 0.5
        tolv = 1e-4
        told = 5 * 1e-3

        print("Computing Karcher Mean of %d curves in SRVF space.." % N)
        while itr < maxit:
            print("updating step: %d" % (itr + 1))

            if iter == maxit:
                print("maximal number of iterations reached")

            mu = mu / sqrt(cf.innerprod_q2(mu, mu))
            if mode == 1:
                self.basis = cf.find_basis_normal(mu)
            else:
                self.basis = []

            sumv = zeros((n, T))
            sumd[0] = inf
            sumd[itr + 1] = 0
            out = Parallel(n_jobs=cores)(delayed(karcher_calc)(
                self.beta[:, :, n], self.q[:, :,
                                           n], betamean, mu, self.basis, mode)
                                         for n in range(N))
            v = zeros((n, T, N))
            for i in range(0, N):
                v[:, :, i] = out[i][0]
                sumd[itr + 1] = sumd[itr + 1] + out[i][1]**2

            sumv = v.sum(axis=2)

            # Compute average direction of tangent vectors v_i
            vbar = sumv / float(N)

            normvbar[itr] = sqrt(cf.innerprod_q2(vbar, vbar))
            normv = normvbar[itr]

            if normv > tolv and fabs(sumd[itr + 1] - sumd[itr]) > told:
                # Update mu in direction of vbar
                mu = cos(delta * normvbar[itr]) * mu + sin(
                    delta * normvbar[itr]) * vbar / normvbar[itr]

                if mode == 1:
                    mu = cf.project_curve(mu)

                x = cf.q_to_curve(mu)
                a = -1 * cf.calculatecentroid(x)
                betamean = x + tile(a, [T, 1]).T
            else:
                break

            itr += 1

        self.q_mean = mu
        self.beta_mean = betamean
        self.v = v
        self.qun = sumd[0:(itr + 1)]
        self.E = normvbar[0:(itr + 1)]

        return
예제 #9
0
def init_path_rand(beta1, beta_mid, beta2, T=100, k=5):
    r"""
    Initializes a path in :math:`\cal{C}`. beta1, beta_mid beta2 are already
    standardized curves. Creates a path from beta1 to beta_mid to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param betamid: numpy ndarray of shape (2,M) of M samples (mid curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    q1 = cf.curve_to_q(beta1)[0]
    q_mid = cf.curve_to_q(beta_mid)[0]

    # find optimal rotation of q2
    beta2, O1, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2)
    q2 = cf.curve_to_q(beta2)[0]

    # find the optimal coorespondence
    gam = cf.optimum_reparam_curve(q2, q1)
    gamI = uf.invertGamma(gam)

    # apply optimal reparametrization
    beta2n = cf.group_action_by_gamma_coord(beta2, gamI)

    # find optimal rotation of q2
    beta2n, O2, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2n)
    centroid2 = cf.calculatecentroid(beta2n)
    beta2n = beta2n - tile(centroid2, [T, 1]).T
    q2n = cf.curve_to_q(beta2n)[0]
    O = O1 @ O2

    # Initialize a path as a geodesic through q1 --- q_mid --- q2
    theta1 = arccos(cf.innerprod_q2(q1, q_mid))
    theta2 = arccos(cf.innerprod_q2(q_mid, q2n))
    tmp = arange(2, int((k - 1) / 2) + 1)
    t = zeros(tmp.size)
    alpha[:, :, 0] = q1
    beta[:, :, 0] = beta1

    i = 0
    for tau in range(2, int((k - 1) / 2) + 1):
        t[i] = (tau - 1.) / ((k - 1) / 2.)
        qnew = (1 / sin(theta1)) * (sin(
            (1 - t[i]) * theta1) * q1 + sin(t[i] * theta1) * q_mid)
        alpha[:, :, tau - 1] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau - 1])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau - 1] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, int((k - 1) / 2)] = q_mid
    beta[:, :, int((k - 1) / 2)] = beta_mid

    i = 0
    for tau in range(int((k - 1) / 2) + 1, k - 1):
        qnew = (1 / sin(theta2)) * (sin(
            (1 - t[i]) * theta2) * q_mid + sin(t[i] * theta2) * q2n)
        alpha[:, :, tau] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, k - 1] = q2n
    beta[:, :, k - 1] = beta2n

    return (alpha, beta, O)