예제 #1
0
    def joint_gauss_model(self, n=1, no=3):
        """
        This function models the functional data using a joint Gaussian model
        extracted from the principal components of the srsfs

        :param n: number of random samples
        :param no: number of principal components (default = 3)
        :type n: integer
        :type no: integer
        """

        # Parameters
        fn = self.fn
        time = self.time
        qn = self.qn
        gam = self.gam

        M = time.size

        # Perform PCA
        jfpca = fpca.fdajpca(self)
        jfpca.calc_fpca(no=no)
        s = jfpca.latent
        U = jfpca.U
        C = jfpca.C
        mu_psi = jfpca.mu_psi

        # compute mean and covariance
        mq_new = qn.mean(axis=1)
        mididx = jfpca.id
        m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
        mqn = np.append(mq_new, m_new.mean())

        # generate random samples
        vals = np.random.multivariate_normal(np.zeros(s.shape), np.diag(s), n)

        tmp = np.matmul(U, np.transpose(vals))
        qhat = np.tile(mqn.T, (n, 1)).T + tmp[0:M + 1, :]
        tmp = np.matmul(U, np.transpose(vals) / C)
        vechat = tmp[(M + 1):, :]
        psihat = np.zeros((M, n))
        gamhat = np.zeros((M, n))
        for ii in range(n):
            psihat[:, ii] = geo.exp_map(mu_psi, vechat[:, ii])
            gam_tmp = cumtrapz(psihat[:, ii]**2,
                               np.linspace(0, 1, M),
                               initial=0.0)
            gamhat[:, ii] = (gam_tmp - gam_tmp.min()) / (gam_tmp.max() -
                                                         gam_tmp.min())

        ft = np.zeros((M, n))
        fhat = np.zeros((M, n))
        for ii in range(n):
            fhat[:, ii] = uf.cumtrapzmid(
                time, qhat[0:M, ii] * np.fabs(qhat[0:M, ii]),
                np.sign(qhat[M, ii]) * (qhat[M, ii] * qhat[M, ii]), mididx)
            ft[:, ii] = uf.warp_f_gamma(np.linspace(0, 1, M), fhat[:, ii],
                                        gamhat[:, ii])

        self.rsamps = True
        self.fs = fhat
        self.gams = gamhat
        self.ft = ft
        self.qs = qhat[0:M, :]

        return
예제 #2
0
def align_fPCA(f, time, num_comp=3, showplot=True, smoothdata=False, cores=-1):
    """
    aligns a collection of functions while extracting principal components.
    The functions are aligned to the principal components

    :param f: numpy ndarray of shape (M,N) of N functions with M samples
    :param time: vector of size M describing the sample points
    :param num_comp: number of fPCA components
    :param showplot: Shows plots of results using matplotlib (default = T)
    :param smooth_data: Smooth the data using a box filter (default = F)
    :param cores: number of cores for parallel (default = -1 (all))
    :type sparam: double
    :type smooth_data: bool
    :type f: np.ndarray
    :type time: np.ndarray

    :rtype: tuple of numpy array
    :return fn: aligned functions - numpy ndarray of shape (M,N) of N
                functions with M samples
    :return qn: aligned srvfs - similar structure to fn
    :return q0: original srvf - similar structure to fn
    :return mqn: srvf mean or median - vector of length M
    :return gam: warping functions - similar structure to fn
    :return q_pca: srsf principal directions
    :return f_pca: functional principal directions
    :return latent: latent values
    :return coef: coefficients
    :return U: eigenvectors
    :return orig_var: Original Variance of Functions
    :return amp_var: Amplitude Variance
    :return phase_var: Phase Variance

    """
    lam = 0.0
    MaxItr = 50
    coef = np.arange(-2., 3.)
    Nstd = coef.shape[0]
    M = f.shape[0]
    N = f.shape[1]
    if M > 500:
        parallel = True
    elif N > 100:
        parallel = True
    else:
        parallel = False

    eps = np.finfo(np.double).eps
    f0 = f

    if showplot:
        plot.f_plot(time, f, title="Original Data")

    # Compute SRSF function from data
    f, g, g2 = uf.gradient_spline(time, f, smoothdata)
    q = g / np.sqrt(abs(g) + eps)

    print("Initializing...")
    mnq = q.mean(axis=1)
    a = mnq.repeat(N)
    d1 = a.reshape(M, N)
    d = (q - d1)**2
    dqq = np.sqrt(d.sum(axis=0))
    min_ind = dqq.argmin()

    print("Aligning %d functions in SRVF space to %d fPCA components..." %
          (N, num_comp))
    itr = 0
    mq = np.zeros((M, MaxItr + 1))
    mq[:, itr] = q[:, min_ind]
    fi = np.zeros((M, N, MaxItr + 1))
    fi[:, :, 0] = f
    qi = np.zeros((M, N, MaxItr + 1))
    qi[:, :, 0] = q
    gam = np.zeros((M, N, MaxItr + 1))
    cost = np.zeros(MaxItr + 1)

    while itr < MaxItr:
        print("updating step: r=%d" % (itr + 1))
        if itr == MaxItr:
            print("maximal number of iterations is reached")

        # PCA Step
        a = mq[:, itr].repeat(N)
        d1 = a.reshape(M, N)
        qhat_cent = qi[:, :, itr] - d1
        K = np.cov(qi[:, :, itr])
        U, s, V = svd(K)

        alpha_i = np.zeros((num_comp, N))
        for ii in range(0, num_comp):
            for jj in range(0, N):
                alpha_i[ii, jj] = trapz(qhat_cent[:, jj] * U[:, ii], time)

        U1 = U[:, 0:num_comp]
        tmp = U1.dot(alpha_i)
        qhat = d1 + tmp

        # Matching Step
        if parallel:
            out = Parallel(n_jobs=cores)(
                delayed(uf.optimum_reparam)(qhat[:,
                                                 n], time, qi[:, n,
                                                              itr], "DP", lam)
                for n in range(N))
            gam_t = np.array(out)
            gam[:, :, itr] = gam_t.transpose()
        else:
            gam[:, :, itr] = uf.optimum_reparam(qhat, time, qi[:, :, itr],
                                                "DP", lam)

        for k in range(0, N):
            time0 = (time[-1] - time[0]) * gam[:, k, itr] + time[0]
            fi[:, k, itr + 1] = np.interp(time0, time, fi[:, k, itr])
            qi[:, k, itr + 1] = uf.f_to_srsf(fi[:, k, itr + 1], time)

        qtemp = qi[:, :, itr + 1]
        mq[:, itr + 1] = qtemp.mean(axis=1)

        cost_temp = np.zeros(N)

        for ii in range(0, N):
            cost_temp[ii] = norm(qtemp[:, ii] - qhat[:, ii])**2

        cost[itr + 1] = cost_temp.mean()

        if abs(cost[itr + 1] - cost[itr]) < 1e-06:
            break

        itr += 1

    if itr >= MaxItr:
        itrf = MaxItr
    else:
        itrf = itr + 1
    cost = cost[1:(itrf + 1)]

    # Aligned data & stats
    fn = fi[:, :, itrf]
    qn = qi[:, :, itrf]
    q0 = qi[:, :, 0]
    mean_f0 = f0.mean(axis=1)
    std_f0 = f0.std(axis=1)
    mqn = mq[:, itrf]
    gamf = gam[:, :, 0]
    for k in range(1, itr):
        gam_k = gam[:, :, k]
        for l in range(0, N):
            time0 = (time[-1] - time[0]) * gam_k[:, l] + time[0]
            gamf[:, l] = np.interp(time0, time, gamf[:, l])

    # Center Mean
    gamI = uf.SqrtMeanInverse(gamf)
    gamI_dev = np.gradient(gamI, 1 / float(M - 1))
    time0 = (time[-1] - time[0]) * gamI + time[0]
    mqn = np.interp(time0, time, mqn) * np.sqrt(gamI_dev)
    for k in range(0, N):
        qn[:, k] = np.interp(time0, time, qn[:, k]) * np.sqrt(gamI_dev)
        fn[:, k] = np.interp(time0, time, fn[:, k])
        gamf[:, k] = np.interp(time0, time, gamf[:, k])

    mean_fn = fn.mean(axis=1)
    std_fn = fn.std(axis=1)

    # Get Final PCA
    mididx = int(np.round(time.shape[0] / 2))
    m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
    mqn2 = np.append(mqn, m_new.mean())
    qn2 = np.vstack((qn, m_new))
    K = np.cov(qn2)

    U, s, V = svd(K)
    stdS = np.sqrt(s)

    # compute the PCA in the q domain
    q_pca = np.ndarray(shape=(M + 1, Nstd, num_comp), dtype=float)
    for k in range(0, num_comp):
        for l in range(0, Nstd):
            q_pca[:, l, k] = mqn2 + coef[l] * stdS[k] * U[:, k]

    # compute the correspondence in the f domain
    f_pca = np.ndarray(shape=(M, Nstd, num_comp), dtype=float)
    for k in range(0, num_comp):
        for l in range(0, Nstd):
            q_pca_tmp = q_pca[0:M, l, k] * np.abs(q_pca[0:M, l, k])
            q_pca_tmp2 = np.sign(q_pca[M, l, k]) * (q_pca[M, l, k]**2)
            f_pca[:, l, k] = uf.cumtrapzmid(time, q_pca_tmp, q_pca_tmp2,
                                            np.floor(time.shape[0] / 2),
                                            mididx)

    N2 = qn.shape[1]
    c = np.zeros((N2, num_comp))
    for k in range(0, num_comp):
        for l in range(0, N2):
            c[l, k] = sum((np.append(qn[:, l], m_new[l]) - mqn2) * U[:, k])

    if showplot:
        CBcdict = {
            'Bl': (0, 0, 0),
            'Or': (.9, .6, 0),
            'SB': (.35, .7, .9),
            'bG': (0, .6, .5),
            'Ye': (.95, .9, .25),
            'Bu': (0, .45, .7),
            'Ve': (.8, .4, 0),
            'rP': (.8, .6, .7),
        }
        cl = sorted(CBcdict.keys())

        # Align Plots
        fig, ax = plot.f_plot(np.arange(0, M) / float(M - 1),
                              gamf,
                              title="Warping Functions")
        ax.set_aspect('equal')

        plot.f_plot(time, fn, title="Warped Data")

        tmp = np.array([mean_f0, mean_f0 + std_f0, mean_f0 - std_f0])
        tmp = tmp.transpose()
        plot.f_plot(time, tmp, title=r"Original Data: Mean $\pm$ STD")

        tmp = np.array([mean_fn, mean_fn + std_fn, mean_fn - std_fn])
        tmp = tmp.transpose()
        plot.f_plot(time, tmp, title=r"Warped Data: Mean $\pm$ STD")

        # PCA Plots
        fig, ax = plt.subplots(2, num_comp)
        for k in range(0, num_comp):
            axt = ax[0, k]
            for l in range(0, Nstd):
                axt.plot(time, q_pca[0:M, l, k], color=CBcdict[cl[l]])
                axt.hold(True)

            axt.set_title('q domain: PD %d' % (k + 1))
            plot.rstyle(axt)
            axt = ax[1, k]
            for l in range(0, Nstd):
                axt.plot(time, f_pca[:, l, k], color=CBcdict[cl[l]])
                axt.hold(True)

            axt.set_title('f domain: PD %d' % (k + 1))
            plot.rstyle(axt)
        fig.set_tight_layout(True)

        cumm_coef = 100 * np.cumsum(s) / sum(s)
        idx = np.arange(0, M + 1) + 1
        plot.f_plot(idx, cumm_coef, "Coefficient Cumulative Percentage")
        plt.xlabel("Percentage")
        plt.ylabel("Index")
        plt.show()

    mean_f0 = f0.mean(axis=1)
    std_f0 = f0.std(axis=1)
    mean_fn = fn.mean(axis=1)
    std_fn = fn.std(axis=1)
    tmp = np.zeros(M)
    tmp[1:] = cumtrapz(mqn * np.abs(mqn), time)
    fmean = np.mean(f0[1, :]) + tmp

    fgam = np.zeros((M, N))
    for k in range(0, N):
        time0 = (time[-1] - time[0]) * gamf[:, k] + time[0]
        fgam[:, k] = np.interp(time0, time, fmean)

    var_fgam = fgam.var(axis=1)
    orig_var = trapz(std_f0**2, time)
    amp_var = trapz(std_fn**2, time)
    phase_var = trapz(var_fgam, time)

    K = np.cov(fn)

    U, s, V = svd(K)

    align_fPCAresults = collections.namedtuple('align_fPCA', [
        'fn', 'qn', 'q0', 'mqn', 'gam', 'q_pca', 'f_pca', 'latent', 'coef',
        'U', 'orig_var', 'amp_var', 'phase_var', 'cost'
    ])

    out = align_fPCAresults(fn, qn, q0, mqn, gamf, q_pca, f_pca, s, c, U,
                            orig_var, amp_var, phase_var, cost)
    return out
예제 #3
0
def align_fPCA(f, time, num_comp=3, showplot=True, smoothdata=False):
    """
    aligns a collection of functions while extracting principal components.
    The functions are aligned to the principal components

    :param f: numpy ndarray of shape (M,N) of N functions with M samples
    :param time: vector of size M describing the sample points
    :param num_comp: number of fPCA components
    :param showplot: Shows plots of results using matplotlib (default = T)
    :param smooth_data: Smooth the data using a box filter (default = F)
    :param sparam: Number of times to run box filter (default = 25)
    :type sparam: double
    :type smooth_data: bool
    :type f: np.ndarray
    :type time: np.ndarray

    :rtype: tuple of numpy array
    :return fn: aligned functions - numpy ndarray of shape (M,N) of N
                functions with M samples
    :return qn: aligned srvfs - similar structure to fn
    :return q0: original srvf - similar structure to fn
    :return mqn: srvf mean or median - vector of length M
    :return gam: warping functions - similar structure to fn
    :return q_pca: srsf principal directions
    :return f_pca: functional principal directions
    :return latent: latent values
    :return coef: coefficients
    :return U: eigenvectors
    :return orig_var: Original Variance of Functions
    :return amp_var: Amplitude Variance
    :return phase_var: Phase Variance

    """
    lam = 0.0
    MaxItr = 50
    coef = np.arange(-2., 3.)
    Nstd = coef.shape[0]
    M = f.shape[0]
    N = f.shape[1]
    if M > 500:
        parallel = True
    elif N > 100:
        parallel = True
    else:
        parallel = False

    eps = np.finfo(np.double).eps
    f0 = f

    if showplot:
        plot.f_plot(time, f, title="Original Data")

    # Compute SRSF function from data
    f, g, g2 = uf.gradient_spline(time, f, smoothdata)
    q = g / np.sqrt(abs(g) + eps)

    print ("Initializing...")
    mnq = q.mean(axis=1)
    a = mnq.repeat(N)
    d1 = a.reshape(M, N)
    d = (q - d1) ** 2
    dqq = np.sqrt(d.sum(axis=0))
    min_ind = dqq.argmin()

    print("Aligning %d functions in SRVF space to %d fPCA components..."
          % (N, num_comp))
    itr = 0
    mq = np.zeros((M, MaxItr + 1))
    mq[:, itr] = q[:, min_ind]
    fi = np.zeros((M, N, MaxItr + 1))
    fi[:, :, 0] = f
    qi = np.zeros((M, N, MaxItr + 1))
    qi[:, :, 0] = q
    gam = np.zeros((M, N, MaxItr + 1))
    cost = np.zeros(MaxItr + 1)

    while itr < MaxItr:
        print("updating step: r=%d" % (itr + 1))
        if itr == MaxItr:
            print("maximal number of iterations is reached")

        # PCA Step
        a = mq[:, itr].repeat(N)
        d1 = a.reshape(M, N)
        qhat_cent = qi[:, :, itr] - d1
        K = np.cov(qi[:, :, itr])
        U, s, V = svd(K)

        alpha_i = np.zeros((num_comp, N))
        for ii in range(0, num_comp):
            for jj in range(0, N):
                alpha_i[ii, jj] = trapz(qhat_cent[:, jj] * U[:, ii], time)

        U1 = U[:, 0:num_comp]
        tmp = U1.dot(alpha_i)
        qhat = d1 + tmp

        # Matching Step
        if parallel:
            out = Parallel(n_jobs=-1)(
                delayed(uf.optimum_reparam)(qhat[:, n], time, qi[:, n, itr],
                                            lam) for n in range(N))
            gam_t = np.array(out)
            gam[:, :, itr] = gam_t.transpose()
        else:
            gam[:, :, itr] = uf.optimum_reparam(qhat, time, qi[:, :, itr], lam)

        for k in range(0, N):
            time0 = (time[-1] - time[0]) * gam[:, k, itr] + time[0]
            fi[:, k, itr + 1] = np.interp(time0, time, fi[:, k, itr])
            qi[:, k, itr + 1] = uf.f_to_srsf(fi[:, k, itr + 1], time)

        qtemp = qi[:, :, itr + 1]
        mq[:, itr + 1] = qtemp.mean(axis=1)

        cost_temp = np.zeros(N)

        for ii in range(0, N):
            cost_temp[ii] = norm(qtemp[:, ii] - qhat[:, ii]) ** 2

        cost[itr + 1] = cost_temp.mean()

        if abs(cost[itr + 1] - cost[itr]) < 1e-06:
            break

        itr += 1

    if itr >= MaxItr:
        itrf = MaxItr
    else:
        itrf = itr+1
    cost = cost[1:(itrf+1)]

    # Aligned data & stats
    fn = fi[:, :, itrf]
    qn = qi[:, :, itrf]
    q0 = qi[:, :, 0]
    mean_f0 = f0.mean(axis=1)
    std_f0 = f0.std(axis=1)
    mqn = mq[:, itrf]
    gamf = gam[:, :, 0]
    for k in range(1, itr):
        gam_k = gam[:, :, k]
        for l in range(0, N):
            time0 = (time[-1] - time[0]) * gam_k[:, l] + time[0]
            gamf[:, l] = np.interp(time0, time, gamf[:, l])

    # Center Mean
    gamI = uf.SqrtMeanInverse(gamf)
    gamI_dev = np.gradient(gamI, 1 / float(M - 1))
    time0 = (time[-1] - time[0]) * gamI + time[0]
    mqn = np.interp(time0, time, mqn) * np.sqrt(gamI_dev)
    for k in range(0, N):
        qn[:, k] = np.interp(time0, time, qn[:, k]) * np.sqrt(gamI_dev)
        fn[:, k] = np.interp(time0, time, fn[:, k])
        gamf[:, k] = np.interp(time0, time, gamf[:, k])

    mean_fn = fn.mean(axis=1)
    std_fn = fn.std(axis=1)

    # Get Final PCA
    mididx = np.round(time.shape[0] / 2)
    m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
    mqn2 = np.append(mqn, m_new.mean())
    qn2 = np.vstack((qn, m_new))
    K = np.cov(qn2)

    U, s, V = svd(K)
    stdS = np.sqrt(s)

    # compute the PCA in the q domain
    q_pca = np.ndarray(shape=(M + 1, Nstd, num_comp), dtype=float)
    for k in range(0, num_comp):
        for l in range(0, Nstd):
            q_pca[:, l, k] = mqn2 + coef[l] * stdS[k] * U[:, k]

    # compute the correspondence in the f domain
    f_pca = np.ndarray(shape=(M, Nstd, num_comp), dtype=float)
    for k in range(0, num_comp):
        for l in range(0, Nstd):
            q_pca_tmp = q_pca[0:M, l, k] * np.abs(q_pca[0:M, l, k])
            q_pca_tmp2 = np.sign(q_pca[M, l, k]) * (q_pca[M, l, k] ** 2)
            f_pca[:, l, k] = uf.cumtrapzmid(time, q_pca_tmp, q_pca_tmp2)

    N2 = qn.shape[1]
    c = np.zeros((N2, num_comp))
    for k in range(0, num_comp):
        for l in range(0, N2):
            c[l, k] = sum((np.append(qn[:, l], m_new[l]) - mqn2) * U[:, k])

    if showplot:
        CBcdict = {
            'Bl': (0, 0, 0),
            'Or': (.9, .6, 0),
            'SB': (.35, .7, .9),
            'bG': (0, .6, .5),
            'Ye': (.95, .9, .25),
            'Bu': (0, .45, .7),
            'Ve': (.8, .4, 0),
            'rP': (.8, .6, .7),
        }
        cl = sorted(CBcdict.keys())

        # Align Plots
        fig, ax = plot.f_plot(np.arange(0, M) / float(M - 1), gamf,
                              title="Warping Functions")
        ax.set_aspect('equal')

        plot.f_plot(time, fn, title="Warped Data")

        tmp = np.array([mean_f0, mean_f0 + std_f0, mean_f0 - std_f0])
        tmp = tmp.transpose()
        plot.f_plot(time, tmp, title="Original Data: Mean $\pm$ STD")

        tmp = np.array([mean_fn, mean_fn + std_fn, mean_fn - std_fn])
        tmp = tmp.transpose()
        plot.f_plot(time, tmp, title="Warped Data: Mean $\pm$ STD")

        # PCA Plots
        fig, ax = plt.subplots(2, num_comp)
        for k in range(0, num_comp):
            axt = ax[0, k]
            for l in range(0, Nstd):
                axt.plot(time, q_pca[0:M, l, k], color=CBcdict[cl[l]])
                axt.hold(True)

            axt.set_title('q domain: PD %d' % (k + 1))
            plot.rstyle(axt)
            axt = ax[1, k]
            for l in range(0, Nstd):
                axt.plot(time, f_pca[:, l, k], color=CBcdict[cl[l]])
                axt.hold(True)

            axt.set_title('f domain: PD %d' % (k + 1))
            plot.rstyle(axt)
        fig.set_tight_layout(True)

        cumm_coef = 100 * np.cumsum(s) / sum(s)
        idx = np.arange(0, M + 1) + 1
        plot.f_plot(idx, cumm_coef, "Coefficient Cumulative Percentage")
        plt.xlabel("Percentage")
        plt.ylabel("Index")
        plt.show()

    mean_f0 = f0.mean(axis=1)
    std_f0 = f0.std(axis=1)
    mean_fn = fn.mean(axis=1)
    std_fn = fn.std(axis=1)
    tmp = np.zeros(M)
    tmp[1:] = cumtrapz(mqn * np.abs(mqn), time)
    fmean = np.mean(f0[1, :]) + tmp

    fgam = np.zeros((M, N))
    for k in range(0, N):
        time0 = (time[-1] - time[0]) * gamf[:, k] + time[0]
        fgam[:, k] = np.interp(time0, time, fmean)

    var_fgam = fgam.var(axis=1)
    orig_var = trapz(std_f0 ** 2, time)
    amp_var = trapz(std_fn ** 2, time)
    phase_var = trapz(var_fgam, time)

    K = np.cov(fn)

    U, s, V = svd(K)

    align_fPCAresults = collections.namedtuple('align_fPCA', ['fn', 'qn',
                                               'q0', 'mqn', 'gam', 'q_pca',
                                               'f_pca', 'latent', 'coef',
                                               'U', 'orig_var', 'amp_var',
                                               'phase_var', 'cost'])

    out = align_fPCAresults(fn, qn, q0, mqn, gamf, q_pca, f_pca, s, c,
                            U, orig_var, amp_var, phase_var, cost)
    return out
예제 #4
0
    def gauss_model(self, n=1, sort_samples=False):
        """
        This function models the functional data using a Gaussian model
        extracted from the principal components of the srvfs

        :param n: number of random samples
        :param sort_samples: sort samples (default = T)
        :type n: integer
        :type sort_samples: bool
        """
        fn = self.fn
        time = self.time
        qn = self.qn
        gam = self.gam

        # Parameters
        eps = np.finfo(np.double).eps
        binsize = np.diff(time)
        binsize = binsize.mean()
        M = time.size

        # compute mean and covariance in q-domain
        mq_new = qn.mean(axis=1)
        mididx = np.round(time.shape[0] / 2)
        m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
        mqn = np.append(mq_new, m_new.mean())
        qn2 = np.vstack((qn, m_new))
        C = np.cov(qn2)

        q_s = np.random.multivariate_normal(mqn, C, n)
        q_s = q_s.transpose()

        # compute the correspondence to the original function domain
        fs = np.zeros((M, n))
        for k in range(0, n):
            fs[:, k] = uf.cumtrapzmid(time, q_s[0:M, k] * np.abs(q_s[0:M, k]),
                                      np.sign(q_s[M, k]) * (q_s[M, k]**2),
                                      mididx)
        fbar = fn.mean(axis=1)

        fsbar = fs.mean(axis=1)
        err = np.transpose(np.tile(fbar - fsbar, (n, 1)))
        fs += err

        # random warping generation
        rgam = uf.randomGamma(gam, n)
        gams = np.zeros((M, n))
        for k in range(0, n):
            gams[:, k] = uf.invertGamma(rgam[:, k])

        # sort functions and warping
        if sort_samples:
            mx = fs.max(axis=0)
            seq1 = mx.argsort()

            # compute the psi-function
            fy = np.gradient(rgam, binsize)
            psi = fy / np.sqrt(abs(fy) + eps)
            ip = np.zeros(n)
            len = np.zeros(n)
            for i in range(0, n):
                tmp = np.ones(M)
                ip[i] = tmp.dot(psi[:, i] / M)
                len[i] = np.arccos(tmp.dot(psi[:, i] / M))

            seq2 = len.argsort()

            # combine x-variability and y-variability
            ft = np.zeros((M, n))
            for k in range(0, n):
                ft[:, k] = np.interp(gams[:, seq2[k]],
                                     np.arange(0, M) / np.double(M - 1),
                                     fs[:, seq1[k]])
                tmp = np.isnan(ft[:, k])
                while tmp.any():
                    rgam2 = uf.randomGamma(gam, 1)
                    ft[:, k] = np.interp(gams[:, seq2[k]],
                                         np.arange(0, M) / np.double(M - 1),
                                         uf.invertGamma(rgam2))
        else:
            # combine x-variability and y-variability
            ft = np.zeros((M, n))
            for k in range(0, n):
                ft[:, k] = np.interp(gams[:, k],
                                     np.arange(0, M) / np.double(M - 1), fs[:,
                                                                            k])
                tmp = np.isnan(ft[:, k])
                while tmp.any():
                    rgam2 = uf.randomGamma(gam, 1)
                    ft[:, k] = np.interp(gams[:, k],
                                         np.arange(0, M) / np.double(M - 1),
                                         uf.invertGamma(rgam2))

        self.rsamps = True
        self.fs = fs
        self.gams = rgam
        self.ft = ft
        self.qs = q_s[0:M, :]

        return
예제 #5
0
def jointfPCA(fn, time, qn, q0, gam, no=2, showplot=True):
    """
    This function calculates joint functional principal component analysis
    on aligned data

    :param fn: numpy ndarray of shape (M,N) of N aligned functions with M
               samples
    :param time: vector of size N describing the sample points
    :param qn: numpy ndarray of shape (M,N) of N aligned SRSF with M samples
    :param no: number of components to extract (default = 2)
    :param showplot: Shows plots of results using matplotlib (default = T)
    :type showplot: bool
    :type no: int

    :rtype: tuple of numpy ndarray
    :return q_pca: srsf principal directions
    :return f_pca: functional principal directions
    :return latent: latent values
    :return coef: coefficients
    :return U: eigenvectors

    """
    coef = np.arange(-1., 2.)
    Nstd = coef.shape[0]

    # set up for fPCA in q-space
    mq_new = qn.mean(axis=1)
    M = time.shape[0]
    mididx = int(np.round(M / 2))
    m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
    mqn = np.append(mq_new, m_new.mean())
    qn2 = np.vstack((qn, m_new))

    # calculate vector space of warping functions
    mu_psi, gam_mu, psi, vec = uf.SqrtMean(gam)

    # joint fPCA
    C = fminbound(find_C,0,1e4,(qn2,vec,q0,no,mu_psi))
    qhat, gamhat, a, U, s, mu_g = jointfPCAd(qn2, vec, C, no, mu_psi)

    # geodesic paths
    q_pca = np.ndarray(shape=(M, Nstd, no), dtype=float)
    f_pca = np.ndarray(shape=(M, Nstd, no), dtype=float)
    
    for k in range(0, no):
        for l in range(0, Nstd):
            qhat = mqn + dot(U[0:(M+1),k],coef[l]*np.sqrt(s[k]))
            vechat = dot(U[(M+1):,k],(coef[l]*np.sqrt(s[k]))/C)
            psihat = geo.exp_map(mu_psi,vechat)
            gamhat = cumtrapz(psihat*psihat,np.linspace(0,1,M),initial=0)
            gamhat = (gamhat - gamhat.min()) / (gamhat.max() - gamhat.min())
            if (sum(vechat)==0):
                gamhat = np.linspace(0,1,M)
            
            fhat = uf.cumtrapzmid(time, qhat[0:M]*np.fabs(qhat[0:M]), np.sign(qhat[M])*(qhat[M]*qhat[M]), mididx)
            f_pca[:,l,k] = uf.warp_f_gamma(np.linspace(0,1,M), fhat, gamhat)
            q_pca[:,l,k] = uf.warp_q_gamma(np.linspace(0,1,M), qhat[0:M], gamhat)

    jfpca_results = collections.namedtuple('jfpca', ['q_pca', 'f_pca', 'latent', 'coef', 'U'])
    jfpca = jfpca_results(q_pca, f_pca, s, a, U)

    if showplot:
        CBcdict = {
            'Bl': (0, 0, 0),
            'Or': (.9, .6, 0),
            'SB': (.35, .7, .9),
            'bG': (0, .6, .5),
            'Ye': (.95, .9, .25),
            'Bu': (0, .45, .7),
            'Ve': (.8, .4, 0),
            'rP': (.8, .6, .7),
        }
        cl = sorted(CBcdict.keys())
        fig, ax = plt.subplots(2, no)
        for k in range(0, no):
            axt = ax[0, k]
            for l in range(0, Nstd):
                axt.plot(time, q_pca[0:M, l, k], color=CBcdict[cl[l]])

            axt.set_title('q domain: PD %d' % (k + 1))
            axt = ax[1, k]
            for l in range(0, Nstd):
                axt.plot(time, f_pca[:, l, k], color=CBcdict[cl[l]])

            axt.set_title('f domain: PD %d' % (k + 1))
        fig.set_tight_layout(True)

        cumm_coef = 100 * np.cumsum(s) / sum(s)
        idx = np.arange(0, s.shape[0]) + 1
        plot.f_plot(idx, cumm_coef, "Coefficient Cumulative Percentage")
        plt.xlabel("Percentage")
        plt.ylabel("Index")
        plt.show()

    return jfpca
예제 #6
0
def gauss_model(fn, time, qn, gam, n=1, sort_samples=False):
    """
    This function models the functional data using a Gaussian model
    extracted from the principal components of the srvfs

    :param fn: numpy ndarray of shape (M,N) of N aligned functions with
     M samples
    :param time: vector of size M describing the sample points
    :param qn: numpy ndarray of shape (M,N) of N aligned srvfs with M samples
    :param gam: warping functions
    :param n: number of random samples
    :param sort_samples: sort samples (default = T)
    :type n: integer
    :type sort_samples: bool
    :type fn: np.ndarray
    :type qn: np.ndarray
    :type gam: np.ndarray
    :type time: np.ndarray

    :rtype: tuple of numpy array
    :return fs: random aligned samples
    :return gams: random warping functions
    :return ft: random samples
    """

    # Parameters
    eps = np.finfo(np.double).eps
    binsize = np.diff(time)
    binsize = binsize.mean()
    M = time.size

    # compute mean and covariance in q-domain
    mq_new = qn.mean(axis=1)
    mididx = np.round(time.shape[0] / 2)
    m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
    mqn = np.append(mq_new, m_new.mean())
    qn2 = np.vstack((qn, m_new))
    C = np.cov(qn2)

    q_s = np.random.multivariate_normal(mqn, C, n)
    q_s = q_s.transpose()

    # compute the correspondence to the original function domain
    fs = np.zeros((M, n))
    for k in range(0, n):
        fs[:, k] = uf.cumtrapzmid(time, q_s[0:M, k] * np.abs(q_s[0:M, k]),
                                  np.sign(q_s[M, k]) * (q_s[M, k]**2), mididx)

    fbar = fn.mean(axis=1)
    fsbar = fs.mean(axis=1)
    err = np.transpose(np.tile(fbar - fsbar, (n, 1)))
    fs += err

    # random warping generation
    rgam = uf.randomGamma(gam, n)
    gams = np.zeros((M, n))
    for k in range(0, n):
        gams[:, k] = uf.invertGamma(rgam[:, k])

    # sort functions and warping
    if sort_samples:
        mx = fs.max(axis=0)
        seq1 = mx.argsort()

        # compute the psi-function
        fy = np.gradient(rgam, binsize)
        psi = fy / np.sqrt(abs(fy) + eps)
        ip = np.zeros(n)
        len = np.zeros(n)
        for i in range(0, n):
            tmp = np.ones(M)
            ip[i] = tmp.dot(psi[:, i] / M)
            len[i] = np.acos(tmp.dot(psi[:, i] / M))

        seq2 = len.argsort()

        # combine x-variability and y-variability
        ft = np.zeros((M, n))
        for k in range(0, n):
            ft[:, k] = np.interp(gams[:, seq2[k]],
                                 np.arange(0, M) / np.double(M - 1),
                                 fs[:, seq1[k]])
            tmp = np.isnan(ft[:, k])
            while tmp.any():
                rgam2 = uf.randomGamma(gam, 1)
                ft[:, k] = np.interp(gams[:, seq2[k]],
                                     np.arange(0, M) / np.double(M - 1),
                                     uf.invertGamma(rgam2))
    else:
        # combine x-variability and y-variability
        ft = np.zeros((M, n))
        for k in range(0, n):
            ft[:, k] = np.interp(gams[:, k],
                                 np.arange(0, M) / np.double(M - 1), fs[:, k])
            tmp = np.isnan(ft[:, k])
            while tmp.any():
                rgam2 = uf.randomGamma(gam, 1)
                ft[:, k] = np.interp(gams[:, k],
                                     np.arange(0, M) / np.double(M - 1),
                                     uf.invertGamma(rgam2))

    samples = collections.namedtuple('samples', ['fs', 'gams', 'ft'])
    out = samples(fs, rgam, ft)
    return out
예제 #7
0
def vertfPCA(fn, time, qn, no=2, showplot=True):
    """
    This function calculates vertical functional principal component analysis
    on aligned data

    :param fn: numpy ndarray of shape (M,N) of N aligned functions with M
               samples
    :param time: vector of size N describing the sample points
    :param qn: numpy ndarray of shape (M,N) of N aligned SRSF with M samples
    :param no: number of components to extract (default = 2)
    :param showplot: Shows plots of results using matplotlib (default = T)
    :type showplot: bool
    :type no: int

    :rtype: tuple of numpy ndarray
    :return q_pca: srsf principal directions
    :return f_pca: functional principal directions
    :return latent: latent values
    :return coef: coefficients
    :return U: eigenvectors

    """
    coef = np.arange(-2., 3.)
    Nstd = coef.shape[0]

    # FPCA
    mq_new = qn.mean(axis=1)
    N = mq_new.shape[0]
    mididx = int(np.round(time.shape[0] / 2))
    m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
    mqn = np.append(mq_new, m_new.mean())
    qn2 = np.vstack((qn, m_new))
    K = np.cov(qn2)

    U, s, V = svd(K)
    stdS = np.sqrt(s)

    # compute the PCA in the q domain
    q_pca = np.ndarray(shape=(N + 1, Nstd, no), dtype=float)
    for k in range(0, no):
        for l in range(0, Nstd):
            q_pca[:, l, k] = mqn + coef[l] * stdS[k] * U[:, k]

    # compute the correspondence in the f domain
    f_pca = np.ndarray(shape=(N, Nstd, no), dtype=float)
    for k in range(0, no):
        for l in range(0, Nstd):
            f_pca[:, l, k] = uf.cumtrapzmid(time, q_pca[0:N, l, k] * np.abs(q_pca[0:N, l, k]),
                                            np.sign(q_pca[N, l, k]) * (q_pca[N, l, k] ** 2),
                                            mididx)
        fbar = fn.mean(axis=1)
        fsbar = f_pca[:, :, k].mean(axis=1)
        err = np.transpose(np.tile(fbar-fsbar, (Nstd,1)))
        f_pca[:, :, k] += err

    N2 = qn.shape[1]
    c = np.zeros((N2, no))
    for k in range(0, no):
        for l in range(0, N2):
            c[l, k] = sum((np.append(qn[:, l], m_new[l]) - mqn) * U[:, k])

    vfpca_results = collections.namedtuple('vfpca', ['q_pca', 'f_pca', 'latent', 'coef', 'U'])
    vfpca = vfpca_results(q_pca, f_pca, s, c, U)

    if showplot:
        CBcdict = {
            'Bl': (0, 0, 0),
            'Or': (.9, .6, 0),
            'SB': (.35, .7, .9),
            'bG': (0, .6, .5),
            'Ye': (.95, .9, .25),
            'Bu': (0, .45, .7),
            'Ve': (.8, .4, 0),
            'rP': (.8, .6, .7),
        }
        cl = sorted(CBcdict.keys())
        fig, ax = plt.subplots(2, no)
        for k in range(0, no):
            axt = ax[0, k]
            for l in range(0, Nstd):
                axt.plot(time, q_pca[0:N, l, k], color=CBcdict[cl[l]])

            axt.set_title('q domain: PD %d' % (k + 1))
            axt = ax[1, k]
            for l in range(0, Nstd):
                axt.plot(time, f_pca[:, l, k], color=CBcdict[cl[l]])

            axt.set_title('f domain: PD %d' % (k + 1))
        fig.set_tight_layout(True)

        cumm_coef = 100 * np.cumsum(s) / sum(s)
        idx = np.arange(0, N + 1) + 1
        plot.f_plot(idx, cumm_coef, "Coefficient Cumulative Percentage")
        plt.xlabel("Percentage")
        plt.ylabel("Index")
        plt.show()

    return vfpca
예제 #8
0
def vertfPCA(fn, time, qn, no=1, showplot=True):
    """
    This function calculates vertical functional principal component analysis
    on aligned data

    :param fn: numpy ndarray of shape (M,N) of N aligned functions with M
               samples
    :param time: vector of size N describing the sample points
    :param qn: numpy ndarray of shape (M,N) of N aligned SRSF with M samples
    :param no: number of components to extract (default = 1)
    :param showplot: Shows plots of results using matplotlib (default = T)
    :type showplot: bool
    :type no: int

    :rtype: tuple of numpy ndarray
    :return q_pca: srsf principal directions
    :return f_pca: functional principal directions
    :return latent: latent values
    :return coef: coefficients
    :return U: eigenvectors

    """
    coef = np.arange(-2., 3.)
    Nstd = coef.shape[0]

    # FPCA
    mq_new = qn.mean(axis=1)
    N = mq_new.shape[0]
    mididx = np.round(time.shape[0] / 2)
    m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
    mqn = np.append(mq_new, m_new.mean())
    qn2 = np.vstack((qn, m_new))
    K = np.cov(qn2)

    U, s, V = svd(K)
    stdS = np.sqrt(s)

    # compute the PCA in the q domain
    q_pca = np.ndarray(shape=(N + 1, Nstd, no), dtype=float)
    for k in range(0, no):
        for l in range(0, Nstd):
            q_pca[:, l, k] = mqn + coef[l] * stdS[k] * U[:, k]

    # compute the correspondence in the f domain
    f_pca = np.ndarray(shape=(N, Nstd, no), dtype=float)
    for k in range(0, no):
        for l in range(0, Nstd):
            f_pca[:, l, k] = uf.cumtrapzmid(time, q_pca[0:N, l, k] * np.abs(q_pca[0:N, l, k]),
                                            np.sign(q_pca[N, l, k]) * (q_pca[N, l, k] ** 2))

    N2 = qn.shape[1]
    c = np.zeros((N2, no))
    for k in range(0, no):
        for l in range(0, N2):
            c[l, k] = sum((np.append(qn[:, l], m_new[l]) - mqn) * U[:, k])

    vfpca_results = collections.namedtuple('vfpca', ['q_pca', 'f_pca', 'latent', 'coef', 'U'])
    vfpca = vfpca_results(q_pca, f_pca, s, c, U)

    if showplot:
        CBcdict = {
            'Bl': (0, 0, 0),
            'Or': (.9, .6, 0),
            'SB': (.35, .7, .9),
            'bG': (0, .6, .5),
            'Ye': (.95, .9, .25),
            'Bu': (0, .45, .7),
            'Ve': (.8, .4, 0),
            'rP': (.8, .6, .7),
        }
        cl = sorted(CBcdict.keys())
        fig, ax = plt.subplots(2, no)
        for k in range(0, no):
            axt = ax[0, k]
            for l in range(0, Nstd):
                axt.plot(time, q_pca[0:N, l, k], color=CBcdict[cl[l]])
                axt.hold(True)

            axt.set_title('q domain: PD %d' % (k + 1))
            plot.rstyle(axt)
            axt = ax[1, k]
            for l in range(0, Nstd):
                axt.plot(time, f_pca[:, l, k], color=CBcdict[cl[l]])
                axt.hold(True)

            axt.set_title('f domain: PD %d' % (k + 1))
            plot.rstyle(axt)
        fig.set_tight_layout(True)

        cumm_coef = 100 * np.cumsum(s) / sum(s)
        idx = np.arange(0, N + 1) + 1
        plot.f_plot(idx, cumm_coef, "Coefficient Cumulative Percentage")
        plt.xlabel("Percentage")
        plt.ylabel("Index")
        plt.show()

    return vfpca
예제 #9
0
    def calc_fpca(self, no=3, id=None, stds=np.arange(-1, 2)):
        """
        This function calculates vertical functional principal component analysis
        on aligned data

        :param no: number of components to extract (default = 3)
        :param id: point to use for f(0) (default = midpoint)
        :param stds: number of standard deviations along gedoesic to compute (default = -1,0,1)
        :type no: int
        :type id: int

        :rtype: fdavpca object containing
        :return q_pca: srsf principal directions
        :return f_pca: functional principal directions
        :return latent: latent values
        :return coef: coefficients
        :return U: eigenvectors

        """
        fn = self.warp_data.fn
        time = self.warp_data.time
        qn = self.warp_data.qn

        M = time.shape[0]
        if id is None:
            mididx = int(np.round(M / 2))
        else:
            mididx = id

        Nstd = stds.shape[0]

        # FPCA
        mq_new = qn.mean(axis=1)
        N = mq_new.shape[0]
        m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
        mqn = np.append(mq_new, m_new.mean())
        qn2 = np.vstack((qn, m_new))
        K = np.cov(qn2)

        U, s, V = svd(K)
        stdS = np.sqrt(s)

        # compute the PCA in the q domain
        q_pca = np.ndarray(shape=(N + 1, Nstd, no), dtype=float)
        for k in range(0, no):
            for l in range(0, Nstd):
                q_pca[:, l, k] = mqn + stds[l] * stdS[k] * U[:, k]

        # compute the correspondence in the f domain
        f_pca = np.ndarray(shape=(N, Nstd, no), dtype=float)
        for k in range(0, no):
            for l in range(0, Nstd):
                f_pca[:, l, k] = uf.cumtrapzmid(
                    time, q_pca[0:N, l, k] * np.abs(q_pca[0:N, l, k]),
                    np.sign(q_pca[N, l, k]) * (q_pca[N, l, k]**2), mididx)
            fbar = fn.mean(axis=1)
            fsbar = f_pca[:, :, k].mean(axis=1)
            err = np.transpose(np.tile(fbar - fsbar, (Nstd, 1)))
            f_pca[:, :, k] += err

        N2 = qn.shape[1]
        c = np.zeros((N2, no))
        for k in range(0, no):
            for l in range(0, N2):
                c[l, k] = sum((np.append(qn[:, l], m_new[l]) - mqn) * U[:, k])

        self.q_pca = q_pca
        self.f_pca = f_pca
        self.latent = s[0:no]
        self.coef = c
        self.U = U[:, 0:no]
        self.id = mididx
        self.mqn = mqn
        self.time = time
        self.stds = stds
        self.no = no

        return
예제 #10
0
    def calc_fpca(self,
                  no=3,
                  stds=np.arange(-1., 2.),
                  id=None,
                  parallel=False,
                  cores=-1):
        """
        This function calculates joint functional principal component analysis
        on aligned data

        :param no: number of components to extract (default = 3)
        :param id: point to use for f(0) (default = midpoint)
        :param stds: number of standard deviations along gedoesic to compute (default = -1,0,1)
        :param parallel: run in parallel (default = F)
        :param cores: number of cores for parallel (default = -1 (all))
        :type no: int
        :type id: int
        :type parallel: bool
        :type cores: int

        :rtype: fdajpca object of numpy ndarray
        :return q_pca: srsf principal directions
        :return f_pca: functional principal directions
        :return latent: latent values
        :return coef: coefficients
        :return U: eigenvectors

        """
        fn = self.warp_data.fn
        time = self.warp_data.time
        qn = self.warp_data.qn
        q0 = self.warp_data.q0
        gam = self.warp_data.gam

        M = time.shape[0]
        if id is None:
            mididx = int(np.round(M / 2))
        else:
            mididx = id

        Nstd = stds.shape[0]

        # set up for fPCA in q-space
        mq_new = qn.mean(axis=1)
        m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
        mqn = np.append(mq_new, m_new.mean())
        qn2 = np.vstack((qn, m_new))

        # calculate vector space of warping functions
        mu_psi, gam_mu, psi, vec = uf.SqrtMean(gam, parallel, cores)

        # joint fPCA
        C = fminbound(find_C, 0, 1e4,
                      (qn2, vec, q0, no, mu_psi, parallel, cores))
        qhat, gamhat, a, U, s, mu_g, g, cov = jointfPCAd(
            qn2, vec, C, no, mu_psi, parallel, cores)

        # geodesic paths
        q_pca = np.ndarray(shape=(M, Nstd, no), dtype=float)
        f_pca = np.ndarray(shape=(M, Nstd, no), dtype=float)

        for k in range(0, no):
            for l in range(0, Nstd):
                qhat = mqn + np.dot(U[0:(M + 1), k], stds[l] * np.sqrt(s[k]))
                vechat = np.dot(U[(M + 1):, k], (stds[l] * np.sqrt(s[k])) / C)
                psihat = geo.exp_map(mu_psi, vechat)
                gamhat = cumtrapz(psihat * psihat,
                                  np.linspace(0, 1, M),
                                  initial=0)
                gamhat = (gamhat - gamhat.min()) / (gamhat.max() -
                                                    gamhat.min())
                if (sum(vechat) == 0):
                    gamhat = np.linspace(0, 1, M)

                fhat = uf.cumtrapzmid(time, qhat[0:M] * np.fabs(qhat[0:M]),
                                      np.sign(qhat[M]) * (qhat[M] * qhat[M]),
                                      mididx)
                f_pca[:, l, k] = uf.warp_f_gamma(np.linspace(0, 1, M), fhat,
                                                 gamhat)
                q_pca[:, l, k] = uf.warp_q_gamma(np.linspace(0, 1, M),
                                                 qhat[0:M], gamhat)

        self.q_pca = q_pca
        self.f_pca = f_pca
        self.latent = s[0:no]
        self.coef = a
        self.U = U[:, 0:no]
        self.mu_psi = mu_psi
        self.mu_g = mu_g
        self.id = mididx
        self.C = C
        self.time = time
        self.g = g
        self.cov = cov
        self.no = no
        self.stds = stds

        return
예제 #11
0
def gauss_model(fn, time, qn, gam, n=1, sort_samples=False):
    """
    This function models the functional data using a Gaussian model
    extracted from the principal components of the srvfs

    :param fn: numpy ndarray of shape (M,N) of N aligned functions with
     M samples
    :param time: vector of size M describing the sample points
    :param qn: numpy ndarray of shape (M,N) of N aligned srvfs with M samples
    :param gam: warping functions
    :param n: number of random samples
    :param sort_samples: sort samples (default = T)
    :type n: integer
    :type sort_samples: bool
    :type fn: np.ndarray
    :type qn: np.ndarray
    :type gam: np.ndarray
    :type time: np.ndarray

    :rtype: tuple of numpy array
    :return fs: random aligned samples
    :return gams: random warping functions
    :return ft: random samples
    """

    # Parameters
    eps = np.finfo(np.double).eps
    binsize = np.diff(time)
    binsize = binsize.mean()
    M = time.size

    # compute mean and covariance in q-domain
    mq_new = qn.mean(axis=1)
    mididx = np.round(time.shape[0] / 2)
    m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :]))
    mqn = np.append(mq_new, m_new.mean())
    qn2 = np.vstack((qn, m_new))
    C = np.cov(qn2)

    q_s = np.random.multivariate_normal(mqn, C, n)
    q_s = q_s.transpose()

    # compute the correspondence to the original function domain
    fs = np.zeros((M, n))
    for k in range(0, n):
        fs[:, k] = uf.cumtrapzmid(time, q_s[0:M, k] * np.abs(q_s[0:M, k]),
                                  np.sign(q_s[M, k]) * (q_s[M, k] ** 2),
                                  mididx)

    fbar = fn.mean(axis=1)
    fsbar = fs.mean(axis=1)
    err = np.transpose(np.tile(fbar-fsbar, (n,1)))
    fs += err

    # random warping generation
    rgam = uf.randomGamma(gam, n)
    gams = np.zeros((M, n))
    for k in range(0, n):
        gams[:, k] = uf.invertGamma(rgam[:, k])

    # sort functions and warping
    if sort_samples:
        mx = fs.max(axis=0)
        seq1 = mx.argsort()

        # compute the psi-function
        fy = np.gradient(rgam, binsize)
        psi = fy / np.sqrt(abs(fy) + eps)
        ip = np.zeros(n)
        len = np.zeros(n)
        for i in range(0, n):
            tmp = np.ones(M)
            ip[i] = tmp.dot(psi[:, i] / M)
            len[i] = np.acos(tmp.dot(psi[:, i] / M))

        seq2 = len.argsort()

        # combine x-variability and y-variability
        ft = np.zeros((M, n))
        for k in range(0, n):
            ft[:, k] = np.interp(gams[:, seq2[k]], np.arange(0, M) /
                                 np.double(M - 1), fs[:, seq1[k]])
            tmp = np.isnan(ft[:, k])
            while tmp.any():
                rgam2 = uf.randomGamma(gam, 1)
                ft[:, k] = np.interp(gams[:, seq2[k]], np.arange(0, M) /
                                     np.double(M - 1), uf.invertGamma(rgam2))
    else:
        # combine x-variability and y-variability
        ft = np.zeros((M, n))
        for k in range(0, n):
            ft[:, k] = np.interp(gams[:, k], np.arange(0, M) /
                                 np.double(M - 1), fs[:, k])
            tmp = np.isnan(ft[:, k])
            while tmp.any():
                rgam2 = uf.randomGamma(gam, 1)
                ft[:, k] = np.interp(gams[:, k], np.arange(0, M) /
                                     np.double(M - 1), uf.invertGamma(rgam2))

    samples = collections.namedtuple('samples', ['fs', 'gams', 'ft'])
    out = samples(fs, rgam, ft)
    return out