import numpy as np from feat import Feat from sklearn.model_selection import KFold df = pd.read_csv('d_example_patients.csv') df.drop('id', axis=1, inplace=True) X = df.drop('class', axis=1).values y = df['class'].values zfile = 'd_example_patients_long.csv' kf = KFold(n_splits=3) kf.get_n_splits(X) clf = Feat( max_depth=5, max_dim=min(50, 2 * X.shape[1]), verbosity=1, shuffle=True, ml='LR', classification=True, functions= "max,+,-,*,/,exp,log,and,or,not,=,<,>,ite,mean,median,min,variance,skew,kurtosis,slope,count", random_state=42) scores = [] for train_idx, test_idx in kf.split(X): clf.fit(X[train_idx], y[train_idx], zfile, train_idx) scores.append(clf.score(X[test_idx], y[test_idx], zfile, test_idx)) print('scores:', scores)
import pandas as pd from pmlb import fetch_data df = pd.read_csv('mnist.csv', sep='\t') print(df.columns) X = df.drop('class', axis=1).values y = df['class'].values from feat import Feat ft = Feat(classification=True, verbosity=2) ft.fit(X[:60000], y[:60000]) print(ft.score(X[60000:], y[60000:]))