def test_user_enters_variables_and_max_value_imputation(df_na): imputer = EndTailImputer(imputation_method="max", tail="right", fold=2, variables=["Age", "Marks"]) imputer.fit(df_na) assert imputer.imputer_dict_ == {"Age": 82.0, "Marks": 1.8}
def test_user_enters_variables_and_iqr_imputation_on_left_tail(df_na): # test case 5: IQR + left tail imputer = EndTailImputer(imputation_method="iqr", tail="left", fold=1.5, variables=["Age", "Marks"]) imputer.fit(df_na) assert imputer.imputer_dict_ == {"Age": -6.5, "Marks": 0.36249999999999993}
def test_automatically_select_variables_and_gaussian_imputation_on_left_tail( df_na): imputer = EndTailImputer(imputation_method="gaussian", tail="left", fold=3) imputer.fit(df_na) assert imputer.imputer_dict_ == { "Age": -1.520509756212462, "Marks": 0.04224051634034898, }
def test_automatically_select_variables_and_gaussian_imputation_on_left_tail( df_na): imputer = EndTailImputer(imputation_method="gaussian", tail="left", fold=3) imputer.fit(df_na) imputer.imputer_dict_ = { key: round(value, 3) for (key, value) in imputer.imputer_dict_.items() } assert imputer.imputer_dict_ == { "Age": -1.521, "Marks": 0.042, }