# # all_trials_values, all_trials_outsiders = get_channel_trials_values_and_outsiders(doas, 'light', 'spontaneous', 7) # a_matrix_all = np.zeros((encoding.no_symbols, encoding.no_symbols), dtype=int) # for i in range(len(all_trials_values)): # a_matrix = encoding.get_a(all_trials_values[i], all_trials_outsiders[i]) # a_matrix_all = np.add(a_matrix_all, a_matrix) # a_matrix_all = np.log10(a_matrix_all + 1) # plot_matrix_A(DOA='LIGHT_all', segment='spontaneous', channel_number=7, values=a_matrix_all) mark_outsiders(doas) all_trials_values, all_trials_outsiders = get_channel_trials_segment_values_and_outsiders( doas, 'deep', 'spontaneous', 2) a_matrix_all = np.zeros((encoding.no_symbols, encoding.no_symbols), dtype=int) for i in range(len(all_trials_values)): a_matrix = encoding.get_a(all_trials_values[i], all_trials_outsiders[i]) a_matrix_all = np.add(a_matrix_all, a_matrix) a_matrix_all = np.log10(a_matrix_all + 1) plot_matrix_A(DOA='DEEP_all_no_bursts', segment='spontaneous', channel_number=2, values=a_matrix_all) # all_trials_values, all_trials_outsiders = get_channel_trials_values_and_outsiders(doas, 'light', 'spontaneous', 7) # a_matrix_all = np.zeros((encoding.no_symbols, encoding.no_symbols), dtype=int) # for i in range(len(all_trials_values)): # a_matrix = encoding.get_a(all_trials_values[i], all_trials_outsiders[i]) # a_matrix_all = np.add(a_matrix_all, a_matrix) # a_matrix_all = np.log10(a_matrix_all + 1) # plot_matrix_A(DOA='lib2_LIGHT_all_no_bursts_log', segment='spontaneous', channel_number=7, values=a_matrix_all)
lag_diff_stimulus = 0 lag_diff_poststimulus = 0 lag_diff_total = 0 for ch_index in range(ch_numbers): # at ch_index in range [1 .. 30] diff_spontaneous = np.zeros(a_size, dtype='i') diff_stimulus = np.zeros(a_size, dtype='i') diff_poststimulus = np.zeros(a_size, dtype='i') # here sum of the differeces matrix between DEEP and LIGHT for trial_index in range(trials_numbers): t_deep = doas[0].channels[ch_index].trials[trial_index] t_light = doas[1].channels[ch_index].trials[trial_index] diff_spontaneous += np.absolute( np.array(encoder.get_a(t_deep.spontaneous.values, lag)) - np.array(encoder.get_a(t_light.spontaneous.values, lag))) diff_stimulus += np.absolute( np.array(encoder.get_a(t_deep.stimulus.values, lag)) - np.array(encoder.get_a(t_light.stimulus.values, lag))) diff_poststimulus += np.absolute( np.array(encoder.get_a(t_deep.poststimulus.values, lag)) - np.array(encoder.get_a(t_light.poststimulus.values, lag))) results_file.write('channel ' + str(ch_index) + ' \n') print('channel ' + str(ch_index) + ' \n') # average of the trials_numbers trials diff_spontaneous = diff_spontaneous / trials_numbers