예제 #1
0
def featureSelectionUsingExtraTreesClassifier(dataSetForFeatureSelection):
    print(
        "\n****** Start performing feature selection using ExtraTreesClassifier *****"
    )
    print("****** Falls under wrapper methods (feature importance) *****")

    labelName = getLabelName()

    #Applying feature encoding before applying the ExtraTreesClassification
    dataSetForFeatureSelection = featureEncodingUsingLabelEncoder(
        dataSetForFeatureSelection)
    dataSetAfterFeatuerSelection = dataSetForFeatureSelection
    #features = dataSetForFeatureSelection.iloc[:,0:len(dataSetForFeatureSelection.columns)-1]
    features = dataSetForFeatureSelection.drop([labelName], axis=1)
    label = dataSetForFeatureSelection[labelName]

    labelencoder = LabelEncoder()
    labelTransformed = labelencoder.fit_transform(label)

    print("****** ExtraTreesClassification is in progress *****")
    #Train using ExtraTreesClassifier
    trainedforest = ExtraTreesClassifier(n_estimators=700).fit(
        features, labelTransformed)
    importances = trainedforest.feature_importances_  #array with importances of each feature
    idx = np.arange(
        0,
        features.shape[1])  #create an index array, with the number of features
    features_to_keep = idx[importances > np.mean(
        importances
    )]  #only keep features whose importance is greater than the mean importance
    featureImportances = pd.Series(importances, index=features.columns)
    selectedFeatures = featureImportances.nlargest(len(features_to_keep))
    print("\n selectedFeatures after ExtraTreesClassification: ",
          selectedFeatures)
    print("****** Completed ExtraTreesClassification *****")

    #Plot the feature Importance to see which features have been considered as most important for our model to make its predictions
    #figure(num=None, figsize=(20, 22), dpi=80, facecolor='w', edgecolor='k')
    #selectedFeatures.plot(kind='barh')

    selectedFeaturesNames = selectedFeatures.keys()
    dataSetForFeatureSelection = dataSetForFeatureSelection.drop(
        selectedFeaturesNames, axis=1)
    dataSetAfterFeatuerSelection = dataSetAfterFeatuerSelection.drop(
        dataSetForFeatureSelection.columns, axis=1)
    dataSetAfterFeatuerSelection[labelName] = label

    numberOfFeaturesInTheDatasetAfterFeatureSelection = len(
        dataSetAfterFeatuerSelection.columns)
    print('\n***** Number of columns in the dataSet after feature selection: ',
          len(dataSetAfterFeatuerSelection.columns))
    print('***** Columns in the dataSet after feature selection: \n',
          dataSetAfterFeatuerSelection.columns)
    print(
        "****** End performing feature selection using ExtraTreesClassifier *****"
    )
    return dataSetAfterFeatuerSelection
예제 #2
0
def featureSelectionUsingChisquaredTest(dataSetForFeatureSelection):
    print(
        "\n****** Start performing feature selection using ChisquaredTest *****"
    )
    print("****** Falls under filter methods (univariate selection) *****")

    numberOfFeatureToBeSelected = 10
    labelName = getLabelName()

    #To be able to apply Chi-squared test
    dataSetForFeatureSelection = featureEncodingUsingLabelEncoder(
        dataSetForFeatureSelection)
    dataSetAfterFeatuerSelection = dataSetForFeatureSelection

    #features = dataSetForFeatureSelection.iloc[:,0:len(dataSetForFeatureSelection.columns)-1]
    features = dataSetForFeatureSelection.drop([labelName], axis=1)
    label = dataSetForFeatureSelection[labelName]

    #Apply SelectKBest class to extract top 10 best features
    bestfeatures = SelectKBest(score_func=chi2, k=numberOfFeatureToBeSelected)
    fitBestfeatures = bestfeatures.fit(features, label)
    columns = pd.DataFrame(features.columns)
    scores = pd.DataFrame(fitBestfeatures.scores_)
    #concat two dataframes for better visualization
    scoresOfBestFeatures = pd.concat([columns, scores], axis=1)
    scoresOfBestFeatures.columns = ['Features', 'Score']
    print("\n***** Scores for each feature in the dataset are *****")
    print(scoresOfBestFeatures.nlargest(numberOfFeatureToBeSelected, 'Score'))

    mask = fitBestfeatures.get_support()
    for j in range(0, len(mask)):
        if (mask[j] == False):
            dataSetAfterFeatuerSelection.pop(features.columns[j])

    numberOfFeaturesInTheDatasetAfterFeatureSelection = len(
        dataSetAfterFeatuerSelection.columns)
    print('***** Number of columns in the dataSet after feature selection: ',
          len(dataSetAfterFeatuerSelection.columns))
    print('***** Columns in the dataSet after feature selection: \n',
          dataSetAfterFeatuerSelection.columns)
    print("****** End performing feature selection using ChisquaredTest *****")

    return dataSetAfterFeatuerSelection
def performPreprocessingBuildModelsAndEvaluateAccuracy(trainingDataSet, testingDataSet, arrayOfModels):
    for i in range(1,len(arrayOfModels)):
        print('***************************************************************************************************************************')
        print('********************************************* Building Model-', i ,' As Below *************************************************')
        print('\t -- Feature Selection: \t ', arrayOfModels[i][0], ' \n\t -- Feature Encoding: \t ', arrayOfModels[i][1], ' \n\t -- Feature Scaling: \t ', arrayOfModels[i][2], ' \n\t -- Classification: \t ', arrayOfModels[i][3], '\n')
 
        trainingFileNameWithAbsolutePath, testingFileNameWithAbsolutePath = getPathToTrainingAndTestingDataSets()
        trainingDataSet = loadCSV(trainingFileNameWithAbsolutePath)
        testingDataSet = loadCSV(testingFileNameWithAbsolutePath)

        labelName = getLabelName()
        label = trainingDataSet[labelName]

        #Combining the test and training datasets for preprocessing then together, because we observed that in sme datasets
        #the values in the categorical columns in test dataset and train dataset are being different this causes issues while
        #applying classification techniques
        completeDataSet = pd.concat(( trainingDataSet, testingDataSet ))

        #difficultyLevel = completeDataSet.pop('difficulty_level')
        
        print("completeDataSet.shape: ",completeDataSet.shape)
        print("completeDataSet.head: ",completeDataSet.head())

        #Feature Selection
        if arrayOfModels[i][0] == 'TheilsU':
            #Perform feature selection using TheilU
            completeDataSetAfterFeatuerSelection = featureSelectionUsingTheilU(completeDataSet)
        elif arrayOfModels[i][0] == 'Chi-SquaredTest':
            #Perform feature selection using Chi-squared Test
            completeDataSetAfterFeatuerSelection = featureSelectionUsingChisquaredTest(completeDataSet)
        elif arrayOfModels[i][0] == 'RandomForestClassifier':
            #Perform feature selection using RandomForestClassifier
            completeDataSetAfterFeatuerSelection = featureSelectionUsingRandomForestClassifier(completeDataSet)
        elif arrayOfModels[i][0] == 'ExtraTreesClassifier':
            #Perform feature selection using ExtraTreesClassifier
            completeDataSetAfterFeatuerSelection = featureSelectionUsingExtraTreesClassifier(completeDataSet)
        
        #Feature Encoding        
        if arrayOfModels[i][1] == 'LabelEncoder':
            #Perform lable encoding to convert categorical values into label encoded features
            completeEncodedDataSet = featureEncodingUsingLabelEncoder(completeDataSetAfterFeatuerSelection)
        elif arrayOfModels[i][1] == 'OneHotEncoder':
            #Perform OnHot encoding to convert categorical values into one-hot encoded features
            completeEncodedDataSet = featureEncodingUsingOneHotEncoder(completeDataSetAfterFeatuerSelection)
        elif arrayOfModels[i][1] == 'FrequencyEncoder':
            #Perform Frequency encoding to convert categorical values into frequency encoded features
            completeEncodedDataSet = featureEncodingUsingFrequencyEncoder(completeDataSetAfterFeatuerSelection)
        elif arrayOfModels[i][1] == 'BinaryEncoder':
            #Perform Binary encoding to convert categorical values into binary encoded features
            completeEncodedDataSet = featureEncodingUsingBinaryEncoder(completeDataSetAfterFeatuerSelection)

        #Feature Scaling        
        if arrayOfModels[i][2] == 'Min-Max':
            #Perform MinMaxScaler to scale the features of the dataset into same range
            completeEncodedAndScaledDataset = featureScalingUsingMinMaxScaler(completeEncodedDataSet)
        elif arrayOfModels[i][2] == 'Binarizing':
            #Perform Binarizing to scale the features of the dataset into same range
            completeEncodedAndScaledDataset = featureScalingUsingBinarizer(completeEncodedDataSet)
        elif arrayOfModels[i][2] == 'Normalizing':
            #Perform Normalizing to scale the features of the dataset into same range
            completeEncodedAndScaledDataset = featureScalingUsingNormalizer(completeEncodedDataSet)
        elif arrayOfModels[i][2] == 'Standardization':
            #Perform Standardization to scale the features of the dataset into same range
            completeEncodedAndScaledDataset = featureScalingUsingStandardScalar(completeEncodedDataSet)
        
        #Split the complete dataSet into training dataSet and testing dataSet
        featuresInPreProcessedTrainingDataSet,featuresInPreProcessedTestingDataSet,labelInPreProcessedTrainingDataSet,labelInPreProcessedTestingDataSet = splitCompleteDataSetIntoTrainingSetAndTestingSet(completeEncodedAndScaledDataset)
        
        trainingEncodedAndScaledDataset = pd.concat([featuresInPreProcessedTrainingDataSet, labelInPreProcessedTrainingDataSet], axis=1, sort=False)
        testingEncodedAndScaledDataset = pd.concat([featuresInPreProcessedTestingDataSet, labelInPreProcessedTestingDataSet], axis=1, sort=False)

        #Classification                
        if arrayOfModels[i][3] == 'DecisonTree':
            #Perform classification using DecisionTreeClassifier
            classifier, trainingAccuracyScore, testingAccuracyScore = classifyUsingDecisionTreeClassifier(trainingEncodedAndScaledDataset, testingEncodedAndScaledDataset)
        elif arrayOfModels[i][3] == 'RandomForestClassifier':
            classifier, trainingAccuracyScore, testingAccuracyScore = classifyUsingRandomForestClassifier(trainingEncodedAndScaledDataset, testingEncodedAndScaledDataset)
        elif arrayOfModels[i][3] == 'ExtraTreesClassifier':
            classifier, trainingAccuracyScore, testingAccuracyScore = classifyUsingExtraTreesClassifier(trainingEncodedAndScaledDataset, testingEncodedAndScaledDataset)
        elif arrayOfModels[i][3] == 'LogisticRegressionRegression':
            classifier, trainingAccuracyScore, testingAccuracyScore = classifyUsingLogisticRegression(trainingEncodedAndScaledDataset, testingEncodedAndScaledDataset)
        elif arrayOfModels[i][3] == 'LinearDiscriminantAnalysis':
            classifier, trainingAccuracyScore, testingAccuracyScore = classifyUsingLinearDiscriminantAnalysis(trainingEncodedAndScaledDataset, testingEncodedAndScaledDataset)
        elif arrayOfModels[i][3] == 'GuassianNaiveBayes':
            classifier, trainingAccuracyScore, testingAccuracyScore = classifyUsingGaussianNB(trainingEncodedAndScaledDataset, testingEncodedAndScaledDataset)
        elif arrayOfModels[i][3] == 'KNN':
            classifier, trainingAccuracyScore, testingAccuracyScore = classifyUsingKNNClassifier(trainingEncodedAndScaledDataset, testingEncodedAndScaledDataset)

        arrayOfModels[i].append(trainingAccuracyScore)
        arrayOfModels[i].append(testingAccuracyScore)
        
        modelName = arrayOfModels[i][0]+"_"+arrayOfModels[i][1]+"_"+arrayOfModels[i][2]+"_"+arrayOfModels[i][3]
        modelFileName = getPathToGenerateModels() + modelName+".pkl"
        arrayOfModels[i].append(modelName)
        arrayOfModels[i].append(modelFileName)
        #Save the model to file
        joblib.dump(classifier, modelFileName)
def performPreprocessing(trainingDataSet, testingDataSet, arrayOfModels):
    for i in range(0,len(arrayOfModels)):
        print('***************************************************************************************************************************')
        print('********************************************* Building Model-', i ,' As Below *************************************************')
        print('\t -- Feature Selection: \t ', arrayOfModels[i][0], ' \n\t -- Feature Encoding: \t ', arrayOfModels[i][1], ' \n\t -- Feature Scaling: \t ', arrayOfModels[i][2], '\n')
 
        trainingFileNameWithAbsolutePath, testingFileNameWithAbsolutePath = getPathToTrainingAndTestingDataSets()
        trainingDataSet = loadCSV(trainingFileNameWithAbsolutePath)
        testingDataSet = loadCSV(testingFileNameWithAbsolutePath)

        labelName = getLabelName()
        label = trainingDataSet[labelName]

        #Combining the test and training datasets for preprocessing then together, because we observed that in sme datasets
        #the values in the categorical columns in test dataset and train dataset are being different this causes issues while
        #applying classification techniques
        completeDataSet = pd.concat(( trainingDataSet, testingDataSet ))

        #difficultyLevel = completeDataSet.pop('difficulty_level')
        
        print("completeDataSet.shape: ",completeDataSet.shape)
        print("completeDataSet.head: ",completeDataSet.head())

        #Feature Selection
        if arrayOfModels[i][0] == 'TheilsU':
            #Perform feature selection using TheilU
            completeDataSetAfterFeatuerSelection = featureSelectionUsingTheilU(completeDataSet)
        elif arrayOfModels[i][0] == 'Chi-SquaredTest':
            #Perform feature selection using Chi-squared Test
            completeDataSetAfterFeatuerSelection = featureSelectionUsingChisquaredTest(completeDataSet)
        elif arrayOfModels[i][0] == 'RandomForestClassifier':
            #Perform feature selection using RandomForestClassifier
            completeDataSetAfterFeatuerSelection = featureSelectionUsingRandomForestClassifier(completeDataSet)
        elif arrayOfModels[i][0] == 'ExtraTreesClassifier':
            #Perform feature selection using ExtraTreesClassifier
            completeDataSetAfterFeatuerSelection = featureSelectionUsingExtraTreesClassifier(completeDataSet)
        
        #Feature Encoding        
        if arrayOfModels[i][1] == 'LabelEncoder':
            #Perform lable encoding to convert categorical values into label encoded features
            completeEncodedDataSet = featureEncodingUsingLabelEncoder(completeDataSetAfterFeatuerSelection)
        elif arrayOfModels[i][1] == 'OneHotEncoder':
            #Perform OnHot encoding to convert categorical values into one-hot encoded features
            completeEncodedDataSet = featureEncodingUsingOneHotEncoder(completeDataSetAfterFeatuerSelection)
        elif arrayOfModels[i][1] == 'FrequencyEncoder':
            #Perform Frequency encoding to convert categorical values into frequency encoded features
            completeEncodedDataSet = featureEncodingUsingFrequencyEncoder(completeDataSetAfterFeatuerSelection)
        elif arrayOfModels[i][1] == 'BinaryEncoder':
            #Perform Binary encoding to convert categorical values into binary encoded features
            completeEncodedDataSet = featureEncodingUsingBinaryEncoder(completeDataSetAfterFeatuerSelection)

        #Feature Scaling        
        if arrayOfModels[i][2] == 'Min-Max':
            #Perform MinMaxScaler to scale the features of the dataset into same range
            completeEncodedAndScaledDataset = featureScalingUsingMinMaxScaler(completeEncodedDataSet)
        elif arrayOfModels[i][2] == 'Binarizing':
            #Perform Binarizing to scale the features of the dataset into same range
            completeEncodedAndScaledDataset = featureScalingUsingBinarizer(completeEncodedDataSet)
        elif arrayOfModels[i][2] == 'Normalizing':
            #Perform Normalizing to scale the features of the dataset into same range
            completeEncodedAndScaledDataset = featureScalingUsingNormalizer(completeEncodedDataSet)
        elif arrayOfModels[i][2] == 'Standardization':
            #Perform Standardization to scale the features of the dataset into same range
            completeEncodedAndScaledDataset = featureScalingUsingStandardScalar(completeEncodedDataSet)
        
        #Split the complete dataSet into training dataSet and testing dataSet
        featuresInPreProcessedTrainingDataSet,featuresInPreProcessedTestingDataSet,labelInPreProcessedTrainingDataSet,labelInPreProcessedTestingDataSet = splitCompleteDataSetIntoTrainingSetAndTestingSet(completeEncodedAndScaledDataset)
        
        trainingEncodedAndScaledDataset = pd.concat([featuresInPreProcessedTrainingDataSet, labelInPreProcessedTrainingDataSet], axis=1, sort=False)
        testingEncodedAndScaledDataset = pd.concat([featuresInPreProcessedTestingDataSet, labelInPreProcessedTestingDataSet], axis=1, sort=False)
    
    return 	completeEncodedAndScaledDataset