예제 #1
0
    def backward(self, epoch, batch):
        encrypted_guest_weight_gradient = self.get_guest_encrypted_weight_gradient_from_guest(
            epoch, batch)

        LOGGER.info("decrypt weight gradient of epoch {} batch {}".format(
            epoch, batch))
        decrypted_guest_weight_gradient = self.encrypter.recursive_decrypt(
            encrypted_guest_weight_gradient)

        noise_weight_gradient = self.rng_generator.generate_random_number(
            (self.input_shape, self.output_unit))

        decrypted_guest_weight_gradient += noise_weight_gradient / self.learning_rate

        self.send_guest_decrypted_weight_gradient_to_guest(
            decrypted_guest_weight_gradient, epoch, batch)

        LOGGER.info("encrypt acc_noise of epoch {} batch {}".format(
            epoch, batch))
        encrypted_acc_noise = self.encrypter.recursive_encrypt(self.acc_noise)
        self.send_encrypted_acc_noise_to_guest(encrypted_acc_noise, epoch,
                                               batch)

        self.acc_noise += noise_weight_gradient
        host_input_gradient = PaillierTensor(
            tb_obj=self.get_host_backward_from_guest(epoch, batch))

        host_input_gradient = host_input_gradient.decrypt(
            self.encrypter).numpy()

        return host_input_gradient
예제 #2
0
    def forward(self, host_input, epoch=0, batch=0):
        if batch >= len(self.train_encrypted_calculator):
            self.train_encrypted_calculator.append(
                self.generated_encrypted_calculator())

        LOGGER.info(
            "forward propagation: encrypt host_bottom_output of epoch {} batch {}"
            .format(epoch, batch))
        host_input = PaillierTensor(ori_data=host_input,
                                    partitions=self.partitions)
        encrypted_host_input = host_input.encrypt(
            self.train_encrypted_calculator[batch])
        self.send_host_encrypted_forward_to_guest(
            encrypted_host_input.get_obj(), epoch, batch)

        encrypted_guest_forward = PaillierTensor(
            tb_obj=self.get_guest_encrypted_forwrad_from_guest(epoch, batch))

        decrypted_guest_forward = encrypted_guest_forward.decrypt(
            self.encrypter)

        if self.acc_noise is None:
            self.input_shape = host_input.shape[1]
            self.output_unit = encrypted_guest_forward.shape[1]
            self.acc_noise = np.zeros((self.input_shape, self.output_unit))
        """some bugs here"""
        decrypted_guest_forward_with_noise = decrypted_guest_forward + host_input * self.acc_noise

        self.send_decrypted_guest_forward_with_noise_to_guest(
            decrypted_guest_forward_with_noise.get_obj(), epoch, batch)
예제 #3
0
파일: ftl_host.py 프로젝트: zpskt/FATE
    def decrypt_guest_data(self, epoch_idx, local_round=-1):

        encrypted_consts = self.transfer_variable.guest_side_const.get(suffix=(
            epoch_idx,
            local_round,
        ),
                                                                       idx=0)
        grad_table = self.transfer_variable.guest_side_gradients.get(suffix=(
            epoch_idx,
            local_round,
        ),
                                                                     idx=0)

        inter_grad = PaillierTensor(tb_obj=grad_table,
                                    partitions=self.partitions)
        decrpyted_grad = inter_grad.decrypt(self.encrypter)
        decrypted_const = self.encrypter.recursive_decrypt(encrypted_consts)

        self.transfer_variable.decrypted_guest_const.remote(decrypted_const,
                                                            suffix=(
                                                                epoch_idx,
                                                                local_round,
                                                            ))
        self.transfer_variable.decrypted_guest_gradients.remote(
            decrpyted_grad.get_obj(), suffix=(
                epoch_idx,
                local_round,
            ))
예제 #4
0
    def decrypt_host_data(self, epoch_idx, local_round=-1):

        inter_grad = self.transfer_variable.host_side_gradients.get(
            suffix=(epoch_idx, local_round, 'host_de_send'), idx=0)
        inter_grad_pt = PaillierTensor(tb_obj=inter_grad,
                                       partitions=self.partitions)
        self.transfer_variable.decrypted_host_gradients.remote(
            inter_grad_pt.decrypt(self.encrypter).get_obj(),
            suffix=(epoch_idx, local_round, 'host_de_get'))
예제 #5
0
    def backward(self, epoch, batch):
        do_backward = True
        selective_ids = []
        if self.do_backward_select_strategy:
            selective_ids, do_backward = self.sync_backward_select_info(
                epoch, batch)

        if not do_backward:
            return [], selective_ids

        encrypted_guest_weight_gradient = self.get_guest_encrypted_weight_gradient_from_guest(
            epoch, batch)

        LOGGER.info("decrypt weight gradient of epoch {} batch {}".format(
            epoch, batch))
        decrypted_guest_weight_gradient = self.encrypter.recursive_decrypt(
            encrypted_guest_weight_gradient)

        noise_weight_gradient = self.rng_generator.generate_random_number(
            (self.input_shape, self.output_unit))

        decrypted_guest_weight_gradient += noise_weight_gradient / self.learning_rate

        self.send_guest_decrypted_weight_gradient_to_guest(
            decrypted_guest_weight_gradient, epoch, batch)

        LOGGER.info("encrypt acc_noise of epoch {} batch {}".format(
            epoch, batch))
        encrypted_acc_noise = self.encrypter.recursive_encrypt(self.acc_noise)
        self.send_encrypted_acc_noise_to_guest(encrypted_acc_noise, epoch,
                                               batch)

        self.acc_noise += noise_weight_gradient
        host_input_gradient = PaillierTensor(
            tb_obj=self.get_host_backward_from_guest(epoch, batch))

        host_input_gradient = host_input_gradient.decrypt(self.encrypter)

        if self.fixed_point_encoder:
            host_input_gradient = host_input_gradient.decode(
                self.fixed_point_encoder).numpy()
        else:
            host_input_gradient = host_input_gradient.numpy()

        return host_input_gradient, selective_ids
예제 #6
0
    def forward(self, host_input, epoch=0, batch=0, train=True):
        if batch >= len(self.train_encrypted_calculator):
            self.train_encrypted_calculator.append(
                self.generated_encrypted_calculator())

        LOGGER.info(
            "forward propagation: encrypt host_bottom_output of epoch {} batch {}"
            .format(epoch, batch))
        host_input = PaillierTensor(ori_data=host_input,
                                    partitions=self.partitions)

        encrypted_host_input = host_input.encrypt(
            self.train_encrypted_calculator[batch])
        self.send_host_encrypted_forward_to_guest(
            encrypted_host_input.get_obj(), epoch, batch)

        encrypted_guest_forward = PaillierTensor(
            tb_obj=self.get_guest_encrypted_forwrad_from_guest(epoch, batch))

        decrypted_guest_forward = encrypted_guest_forward.decrypt(
            self.encrypter)
        if self.fixed_point_encoder:
            decrypted_guest_forward = decrypted_guest_forward.decode(
                self.fixed_point_encoder)

        if self.acc_noise is None:
            self.input_shape = host_input.shape[1]
            self.output_unit = self.get_interactive_layer_output_unit()
            self.acc_noise = np.zeros((self.input_shape, self.output_unit))

        mask_table = None
        if train and self.drop_out_keep_rate and self.drop_out_keep_rate < 1:
            mask_table = self.get_interactive_layer_drop_out_table(
                epoch, batch)

        if mask_table:
            decrypted_guest_forward_with_noise = decrypted_guest_forward + (
                host_input * self.acc_noise).select_columns(mask_table)
            self.mask_table = mask_table
        else:
            decrypted_guest_forward_with_noise = decrypted_guest_forward + (
                host_input * self.acc_noise)

        self.send_decrypted_guest_forward_with_noise_to_guest(
            decrypted_guest_forward_with_noise.get_obj(), epoch, batch)