def setUp(self): self.paillier_encrypt = PaillierEncrypt() self.paillier_encrypt.generate_key() self.gradient_operator = LogisticGradient() self.taylor_operator = TaylorLogisticGradient() self.X = np.array([[1, 2, 3, 4, 5], [3, 2, 4, 5, 1], [ 2, 2, 3, 1, 1, ]]) / 10 self.X1 = np.c_[self.X, np.ones(3)] self.Y = np.array([[1], [1], [-1]]) self.values = [] for idx, x in enumerate(self.X): inst = Instance(inst_id=idx, features=x, label=self.Y[idx]) self.values.append((idx, inst)) self.values1 = [] for idx, x in enumerate(self.X1): inst = Instance(inst_id=idx, features=x, label=self.Y[idx]) self.values1.append((idx, inst)) self.coef = np.array([2, 2.3, 3, 4, 2.1]) / 10 self.coef1 = np.append(self.coef, [1])
class TestHomoLRGradient(unittest.TestCase): def setUp(self): self.paillier_encrypt = PaillierEncrypt() self.paillier_encrypt.generate_key() self.gradient_operator = LogisticGradient() self.taylor_operator = TaylorLogisticGradient() self.X = np.array([[1, 2, 3, 4, 5], [3, 2, 4, 5, 1], [ 2, 2, 3, 1, 1, ]]) / 10 self.X1 = np.c_[self.X, np.ones(3)] self.Y = np.array([[1], [1], [-1]]) self.values = [] for idx, x in enumerate(self.X): inst = Instance(inst_id=idx, features=x, label=self.Y[idx]) self.values.append((idx, inst)) self.values1 = [] for idx, x in enumerate(self.X1): inst = Instance(inst_id=idx, features=x, label=self.Y[idx]) self.values1.append((idx, inst)) self.coef = np.array([2, 2.3, 3, 4, 2.1]) / 10 self.coef1 = np.append(self.coef, [1]) def test_gradient_length(self): fit_intercept = False grad = self.gradient_operator.compute_gradient(self.values, self.coef, 0, fit_intercept) self.assertEqual(grad.shape[0], self.X.shape[1]) taylor_grad = self.taylor_operator.compute_gradient( self.values, self.coef, 0, fit_intercept) self.assertEqual(taylor_grad.shape[0], self.X.shape[1]) self.assertTrue(np.sum(grad - taylor_grad) < 0.0001) fit_intercept = True grad = self.gradient_operator.compute_gradient(self.values, self.coef, 0, fit_intercept) self.assertEqual(grad.shape[0], self.X.shape[1] + 1) taylor_grad = self.taylor_operator.compute_gradient( self.values, self.coef, 0, fit_intercept) self.assertEqual(taylor_grad.shape[0], self.X.shape[1] + 1) self.assertTrue(np.sum(grad - taylor_grad) < 0.0001)
def _init_model(self, params): super()._init_model(params) self.cipher.register_paillier_cipher(self.transfer_variable) if params.encrypt_param.method in [consts.PAILLIER]: self.use_encrypt = True self.gradient_operator = TaylorLogisticGradient() self.re_encrypt_batches = params.re_encrypt_batches else: self.use_encrypt = False self.gradient_operator = LogisticGradient()