def setUp(self): self.init_param = InitParam() self.boosting_tree_param = HeteroSecureBoostParam() self.config_dict = \ {"HeteroSecureBoostParam": { "init_param": {"init_method": "test_init", "fit_intercept": False}, "tree_param": {"criterion_method": "test_decisiontree"}, "task_type": "test_boostingtree", "test_variable": "test"} }
def test_initializer(self): initializer = Initializer() data_shape = 10 init_param_obj = InitParam(init_method=consts.RANDOM_NORMAL, init_const=20, fit_intercept=False ) model = initializer.init_model(model_shape=data_shape, init_params=init_param_obj) model_shape = np.array(model).shape self.assertTrue(model_shape == (10,))
def setUp(self): self.init_param = InitParam() self.boosting_tree_param = BoostingTreeParam() import json import time config_dict = \ {"InitParam": {"init_method": "test_init", "fit_intercept": False}, "DecisionTreeParam": {"criterion_method": "test_decisiontree"}, "BoostingTreeParam": {"task_type": "test_boostingtree"}} config_json = json.dumps(config_dict) timeid = int(time.time() * 1000) self.config_path = "param_config_test." + str(timeid) with open(self.config_path, "w") as fout: fout.write(config_json)
def test_directly_extract(self): init_param = InitParam() extractor = ParamExtract() init_param = extractor.parse_param_from_config(init_param, self.config_path) self.assertTrue(init_param.init_method == "test_init")