예제 #1
0
def run_one_model_with_specific_evaluation_mod(train_data,
                                               test_data,
                                               mode: str = None):
    """
    Runs the example with one model svc.

    :param train_data: train data for pipeline training
    :param test_data: test data for pipeline training
    :param mode: pass gpu flag to make gpu evaluation
    """

    problem = 'classification'

    if mode == 'gpu':
        baseline_model = Fedot(problem=problem, preset='gpu')
    else:
        baseline_model = Fedot(problem=problem)
    svc_node_with_custom_params = PrimaryNode('svc')
    # the custom params are needed to make probability evaluation available
    # otherwise an error is occurred
    svc_node_with_custom_params.custom_params = dict(kernel='rbf',
                                                     C=10,
                                                     gamma=1,
                                                     cache_size=2000,
                                                     probability=True)
    preset_pipeline = Pipeline(svc_node_with_custom_params)

    start = datetime.now()
    baseline_model.fit(features=train_data,
                       target='target',
                       predefined_model=preset_pipeline)
    print(f'Completed with custom params in: {datetime.now() - start}')

    baseline_model.predict(features=test_data)
    print(baseline_model.get_metrics())
예제 #2
0
def run_ts_forecasting_example(with_plot=True,
                               with_pipeline_vis=True,
                               timeout=None):
    train_data_path = f'{fedot_project_root()}/examples/data/salaries.csv'

    target = pd.read_csv(train_data_path)['target']

    # Define forecast length and define parameters - forecast length
    forecast_length = 30
    task_parameters = TsForecastingParams(forecast_length=forecast_length)

    # init model for the time series forecasting
    model = Fedot(problem='ts_forecasting',
                  task_params=task_parameters,
                  timeout=timeout)

    # run AutoML model design in the same way
    pipeline = model.fit(features=train_data_path, target='target')
    if with_pipeline_vis:
        pipeline.show()

    # use model to obtain forecast
    forecast = model.predict(features=train_data_path)

    print(
        model.get_metrics(metric_names=['rmse', 'mae', 'mape'], target=target))

    # plot forecasting result
    if with_plot:
        model.plot_prediction()

    return forecast
예제 #3
0
def run_multi_output_case(path, vis=False):
    """ Function launch case for river levels prediction on Lena river as
    multi-output regression task

    :param path: path to the file with table
    :param vis: is it needed to visualise pipeline and predictions
    """
    target_columns = [
        '1_day', '2_day', '3_day', '4_day', '5_day', '6_day', '7_day'
    ]

    data = InputData.from_csv(path,
                              target_columns=target_columns,
                              columns_to_drop=['date'])
    train, test = train_test_data_setup(data)

    problem = 'regression'

    automl_model = Fedot(problem=problem)
    automl_model.fit(features=train)
    predicted_array = automl_model.predict(features=test)

    # Convert output into one dimensional array
    forecast = np.ravel(predicted_array)

    mae_value = mean_absolute_error(np.ravel(test.target), forecast)
    print(f'MAE - {mae_value:.2f}')

    if vis:
        plot_predictions(predicted_array, test)
예제 #4
0
def test_pandas_input_for_api():
    train_data, test_data, threshold = get_dataset('classification')

    train_features = pd.DataFrame(train_data.features)
    train_target = pd.Series(train_data.target)

    test_features = pd.DataFrame(test_data.features)
    test_target = pd.Series(test_data.target)

    # task selection, initialisation of the framework
    baseline_model = Fedot(problem='classification')

    # fit model without optimisation - single XGBoost node is used
    baseline_model.fit(features=train_features,
                       target=train_target,
                       predefined_model='xgboost')

    # evaluate the prediction with test data
    prediction = baseline_model.predict(features=test_features)

    assert len(prediction) == len(test_target)

    # evaluate quality metric for the test sample
    baseline_metrics = baseline_model.get_metrics(metric_names='f1',
                                                  target=test_target)

    assert baseline_metrics['f1'] > 0
예제 #5
0
def test_api_predict_correct(task_type: str = 'classification'):
    train_data, test_data, _ = get_dataset(task_type)
    model = Fedot(problem=task_type, composer_params=composer_params)
    fedot_model = model.fit(features=train_data)
    prediction = model.predict(features=test_data)
    metric = model.get_metrics()

    assert isinstance(fedot_model, Pipeline)
    assert len(prediction) == len(test_data.target)
    assert metric['f1'] > 0
예제 #6
0
def run_classification_example(timeout=None):
    train_data_path = f'{fedot_project_root()}/cases/data/scoring/scoring_train.csv'
    test_data_path = f'{fedot_project_root()}/cases/data/scoring/scoring_test.csv'

    problem = 'classification'

    baseline_model = Fedot(problem=problem, timeout=timeout)
    baseline_model.fit(features=train_data_path,
                       target='target',
                       predefined_model='xgboost')

    baseline_model.predict(features=test_data_path)
    print(baseline_model.get_metrics())

    auto_model = Fedot(problem=problem, seed=42, timeout=timeout)
    auto_model.fit(features=train_data_path, target='target')
    prediction = auto_model.predict_proba(features=test_data_path)
    print(auto_model.get_metrics())

    return prediction
예제 #7
0
def run_regression_example():
    data_path = f'{fedot_project_root()}/cases/data/cholesterol/cholesterol.csv'

    data = InputData.from_csv(data_path)
    train, test = train_test_data_setup(data)

    problem = 'regression'

    baseline_model = Fedot(problem=problem)
    baseline_model.fit(features=train, predefined_model='xgbreg')

    baseline_model.predict(features=test)
    print(baseline_model.get_metrics())

    auto_model = Fedot(problem=problem, seed=42)
    auto_model.fit(features=train, target='target')
    prediction = auto_model.predict(features=test)
    print(auto_model.get_metrics())

    return prediction
예제 #8
0
def test_multiobj_for_api():
    train_data, test_data, _ = get_dataset('classification')
    composer_params['composer_metric'] = ['f1', 'node_num']

    model = Fedot(problem='classification', composer_params=composer_params)
    model.fit(features=train_data)
    prediction = model.predict(features=test_data)
    metric = model.get_metrics()

    assert len(prediction) == len(test_data.target)
    assert metric['f1'] > 0
    assert model.best_models is not None
예제 #9
0
def test_multi_target_regression_composing_correct(multi_target_data_setup):
    # Load simple dataset for multi-target
    train, test = multi_target_data_setup

    problem = 'regression'
    simple_composer_params = get_simple_composer_params()

    automl_model = Fedot(problem=problem,
                         composer_params=simple_composer_params)
    automl_model.fit(features=train)
    predicted_array = automl_model.predict(features=test)
    assert predicted_array is not None
예제 #10
0
def test_api_forecast_correct(task_type: str = 'ts_forecasting'):
    # The forecast length must be equal to 12
    forecast_length = 12
    train_data, test_data, _ = get_dataset(task_type)
    model = Fedot(problem='ts_forecasting', composer_params=composer_params,
                  task_params=TsForecastingParams(forecast_length=forecast_length))

    model.fit(features=train_data)
    ts_forecast = model.predict(features=train_data)
    metric = model.get_metrics(target=test_data.target, metric_names='rmse')

    assert len(ts_forecast) == forecast_length
    assert metric['rmse'] >= 0
예제 #11
0
def run_pipeline_with_specific_evaluation_mode(train_data: InputData,
                                               test_data: InputData,
                                               mode: str = None):
    """
    Runs the example with 3-node pipeline.

    :param train_data: train data for pipeline training
    :param test_data: test data for pipeline training
    :param mode: pass gpu flag to make gpu evaluation
    """
    problem = 'classification'

    if mode == 'gpu':
        baseline_model = Fedot(problem=problem, preset='gpu')
    else:
        baseline_model = Fedot(problem=problem)

    svc_node_with_custom_params = PrimaryNode('svc')
    svc_node_with_custom_params.custom_params = dict(kernel='rbf',
                                                     C=10,
                                                     gamma=1,
                                                     cache_size=2000,
                                                     probability=True)

    logit_node = PrimaryNode('logit')

    rf_node = SecondaryNode(
        'rf', nodes_from=[svc_node_with_custom_params, logit_node])

    preset_pipeline = Pipeline(rf_node)

    start = datetime.now()
    baseline_model.fit(features=train_data,
                       target='target',
                       predefined_model=preset_pipeline)
    print(f'Completed with custom params in: {datetime.now() - start}')

    baseline_model.predict(features=test_data)
    print(baseline_model.get_metrics())
예제 #12
0
def test_api_forecast_numpy_input_with_static_model_correct(task_type: str = 'ts_forecasting'):
    forecast_length = 10
    train_data, test_data, _ = get_dataset(task_type)
    model = Fedot(problem='ts_forecasting',
                  task_params=TsForecastingParams(forecast_length=forecast_length))

    # Define chain for prediction
    node_lagged = PrimaryNode('lagged')
    chain = Chain(SecondaryNode('linear', nodes_from=[node_lagged]))

    model.fit(features=train_data.features,
              target=train_data.target,
              predefined_model=chain)
    ts_forecast = model.predict(features=train_data)
    metric = model.get_metrics(target=test_data.target, metric_names='rmse')

    assert len(ts_forecast) == forecast_length
    assert metric['rmse'] >= 0
예제 #13
0
def make_forecast(df, len_forecast: int, time_series_label: str):
    """
    Function for making time series forecasting with Prophet library

    :param df: dataframe to process
    :param len_forecast: forecast length
    :param time_series_label: name of time series to process

    :return predicted_values: forecast
    :return model_name: name of the model (always 'AutoTS')
    """

    # Define parameters
    task = Task(TaskTypesEnum.ts_forecasting,
                TsForecastingParams(forecast_length=len_forecast))

    # Init model for the time series forecasting
    model = Fedot(problem='ts_forecasting',
                  task_params=task.task_params,
                  composer_params={
                      'timeout': 1,
                      'preset': 'ultra_light_tun'
                  },
                  preset='ultra_light_tun')

    input_data = InputData(idx=np.arange(0, len(df)),
                           features=np.array(df[time_series_label]),
                           target=np.array(df[time_series_label]),
                           task=task,
                           data_type=DataTypesEnum.ts)

    start_forecast = len(df)
    end_forecast = start_forecast + len_forecast
    predict_input = InputData(idx=np.arange(start_forecast, end_forecast),
                              features=np.array(df[time_series_label]),
                              target=np.array(df[time_series_label]),
                              task=task,
                              data_type=DataTypesEnum.ts)
    # Run AutoML model design in the same way
    pipeline = model.fit(features=input_data)
    predicted_values = model.predict(predict_input)

    model_name = 'FEDOT'
    return predicted_values, model_name
예제 #14
0
def run_credit_scoring_problem(train_file_path, test_file_path,
                               timeout: float = 5.0,
                               is_visualise=False,
                               with_tuning=False,
                               cache_path=None):

    preset = 'light_tun' if with_tuning else 'light'
    automl = Fedot(problem='classification', timeout=timeout, verbose_level=4,
                   preset=preset)
    automl.fit(train_file_path)
    predict = automl.predict(test_file_path)
    metrics = automl.get_metrics()

    if is_visualise:
        automl.current_pipeline.show()

    print(f'Composed ROC AUC is {round(metrics["roc_auc"], 3)}')

    return metrics["roc_auc"]
예제 #15
0
def test_cv_api_correct():
    composer_params = {
        'max_depth': 1,
        'max_arity': 2,
        'timeout': 0.0001,
        'preset': 'ultra_light',
        'cv_folds': 10
    }
    task = Task(task_type=TaskTypesEnum.classification)
    dataset_to_compose, dataset_to_validate = get_data(task)
    model = Fedot(problem='classification',
                  composer_params=composer_params,
                  verbose_level=2)
    fedot_model = model.fit(features=dataset_to_compose)
    prediction = model.predict(features=dataset_to_validate)
    metric = model.get_metrics()

    assert isinstance(fedot_model, Pipeline)
    assert len(prediction) == len(dataset_to_validate.target)
    assert metric['f1'] > 0