def test_chain_hierarchy_fit_correct(data_setup): data = data_setup train, _ = train_test_data_setup(data) first = PrimaryNode(operation_type='logit') second = SecondaryNode(operation_type='logit', nodes_from=[first]) third = SecondaryNode(operation_type='logit', nodes_from=[first]) final = SecondaryNode(operation_type='logit', nodes_from=[second, third]) chain = Chain() for node in [first, second, third, final]: chain.add_node(node) chain.unfit() train_predicted = chain.fit(input_data=train) assert chain.root_node.descriptive_id == ('((/n_logit_default_params;)/' 'n_logit_default_params;;(/' 'n_logit_default_params;)/' 'n_logit_default_params;)/' 'n_logit_default_params') assert chain.length == 4 assert chain.depth == 3 assert train_predicted.predict.shape[0] == train.target.shape[0] assert final.fitted_operation is not None
def run_chain_from_automl(train_file_path: str, test_file_path: str, max_run_time: timedelta = timedelta(minutes=10)): """ Function run chain with Auto ML models in nodes :param train_file_path: path to the csv file with data for train :param test_file_path: path to the csv file with data for validation :param max_run_time: maximum running time for customization of the "tpot" model :return roc_auc_value: ROC AUC metric for chain """ train_data = InputData.from_csv(train_file_path) test_data = InputData.from_csv(test_file_path) testing_target = test_data.target chain = Chain() node_scaling = PrimaryNode('scaling') node_tpot = PrimaryNode('tpot') node_tpot.operation.params = {'max_run_time_sec': max_run_time.seconds} node_lda = SecondaryNode('lda', nodes_from=[node_scaling]) node_rf = SecondaryNode('rf', nodes_from=[node_tpot, node_lda]) chain.add_node(node_rf) chain.fit(train_data) results = chain.predict(test_data) roc_auc_value = roc_auc(y_true=testing_target, y_score=results.predict) print(roc_auc_value) return roc_auc_value
def get_chain(): node_scaling = PrimaryNode('scaling') node_ransac = SecondaryNode('ransac_lin_reg', nodes_from=[node_scaling]) node_ridge = SecondaryNode('lasso', nodes_from=[node_ransac]) chain = Chain(node_ridge) return chain
def get_nodes(): first_node = PrimaryNode('knn') second_node = PrimaryNode('knn') third_node = SecondaryNode('lda', nodes_from=[first_node, second_node]) root = SecondaryNode('logit', nodes_from=[third_node]) return [root, third_node, first_node, second_node]
def get_composite_chain(composite_flag: bool = True) -> Chain: node_first = PrimaryNode('cnn') node_first.custom_params = { 'image_shape': (28, 28, 1), 'architecture': 'deep', 'num_classes': 10, 'epochs': 15, 'batch_size': 128 } node_second = PrimaryNode('cnn') node_second.custom_params = { 'image_shape': (28, 28, 1), 'architecture_type': 'simplified', 'num_classes': 10, 'epochs': 10, 'batch_size': 128 } node_final = SecondaryNode('rf', nodes_from=[node_first, node_second]) if not composite_flag: node_final = SecondaryNode('rf', nodes_from=[node_first]) chain = Chain(node_final) return chain
def run_chain_from_automl(train_file_path: str, test_file_path: str, max_run_time: timedelta = timedelta(minutes=10)): train_data = InputData.from_csv(train_file_path) test_data = InputData.from_csv(test_file_path) testing_target = test_data.target chain = Chain() node_tpot = PrimaryNode('tpot') node_tpot.model.params = {'max_run_time_sec': max_run_time.seconds} node_lda = PrimaryNode('lda') node_rf = SecondaryNode('rf') node_rf.nodes_from = [node_tpot, node_lda] chain.add_node(node_rf) chain.fit(train_data) results = chain.predict(test_data) roc_auc_value = roc_auc(y_true=testing_target, y_score=results.predict) print(roc_auc_value) return roc_auc_value
def generate_chain() -> Chain: node_scaling = PrimaryNode('scaling') node_first = SecondaryNode('kmeans', nodes_from=[node_scaling]) node_second = SecondaryNode('kmeans', nodes_from=[node_scaling]) node_root = SecondaryNode('logit', nodes_from=[node_first, node_second]) chain = Chain(node_root) return chain
def ts_chain_with_incorrect_data_flow(): """ Connection lagged -> lagged is incorrect Connection ridge -> ar is incorrect also lagged - lagged - ridge \ ar -> final forecast lagged - ridge / """ # First level node_lagged = PrimaryNode('lagged') # Second level node_lagged_1 = SecondaryNode('lagged', nodes_from=[node_lagged]) node_lagged_2 = PrimaryNode('lagged') # Third level node_ridge_1 = SecondaryNode('ridge', nodes_from=[node_lagged_1]) node_ridge_2 = SecondaryNode('ridge', nodes_from=[node_lagged_2]) # Fourth level - root node node_final = SecondaryNode('ar', nodes_from=[node_ridge_1, node_ridge_2]) chain = Chain(node_final) return chain
def get_complex_chain(): """ Chain looking like this smoothing - lagged - ridge \ \ ridge -> final forecast / lagged - ridge / """ # First level node_smoothing = PrimaryNode('smoothing') # Second level node_lagged_1 = SecondaryNode('lagged', nodes_from=[node_smoothing]) node_lagged_2 = PrimaryNode('lagged') # Third level node_ridge_1 = SecondaryNode('ridge', nodes_from=[node_lagged_1]) node_ridge_2 = SecondaryNode('ridge', nodes_from=[node_lagged_2]) # Fourth level - root node node_final = SecondaryNode('ridge', nodes_from=[node_ridge_1, node_ridge_2]) chain = Chain(node_final) return chain
def get_knn_class_chain(k_neighbors): """ Function return chain with K-nn classification model in it """ node_scaling = PrimaryNode('scaling') node_final = SecondaryNode('knn', nodes_from=[node_scaling]) node_final.custom_params = {'n_neighbors': k_neighbors} chain = Chain(node_final) return chain
def generate_chain() -> Chain: node_scaling = PrimaryNode('scaling') node_lasso = SecondaryNode('lasso', nodes_from=[node_scaling]) node_ridge = SecondaryNode('ridge', nodes_from=[node_scaling]) node_root = SecondaryNode('linear', nodes_from=[node_lasso, node_ridge]) chain = Chain(node_root) return chain
def run_tpot_vs_fedot_example(train_file_path: str, test_file_path: str): train_data = InputData.from_csv(train_file_path) test_data = InputData.from_csv(test_file_path) training_features = train_data.features testing_features = test_data.features training_target = train_data.target testing_target = test_data.target # Average CV score on the training set was: 0.93755 exported_pipeline = make_pipeline( StackingEstimator(estimator=BernoulliNB()), RandomForestClassifier()) # Fix random state for all the steps in exported pipeline set_param_recursive(exported_pipeline.steps, 'random_state', 1) exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict_proba(testing_features)[:, 1] roc_auc_value = roc_auc(y_true=testing_target, y_score=results) print(f'ROC AUC for TPOT: {roc_auc_value}') node_scaling = PrimaryNode('scaling') node_bernb = SecondaryNode('bernb', nodes_from=[node_scaling]) node_rf = SecondaryNode('rf', nodes_from=[node_bernb, node_scaling]) chain = Chain(node_rf) chain.fit(train_data) results = chain.predict(test_data) roc_auc_value = roc_auc(y_true=testing_target, y_score=results.predict) print(f'ROC AUC for FEDOT: {roc_auc_value}') return roc_auc_value
def chain_with_secondary_nodes_only(): first = SecondaryNode(operation_type='logit', nodes_from=[]) second = SecondaryNode(operation_type='logit', nodes_from=[first]) chain = Chain() chain.add_node(first) chain.add_node(second) return chain
def chain_with_only_data_operations(): first = PrimaryNode(operation_type='one_hot_encoding') second = SecondaryNode(operation_type='scaling', nodes_from=[first]) final = SecondaryNode(operation_type='ransac_lin_reg', nodes_from=[second]) chain = Chain(final) return chain
def get_complex_regr_chain(): node_scaling = PrimaryNode(operation_type='scaling') node_ridge = SecondaryNode('ridge', nodes_from=[node_scaling]) node_linear = SecondaryNode('linear', nodes_from=[node_scaling]) final = SecondaryNode('xgbreg', nodes_from=[node_ridge, node_linear]) chain = Chain(final) return chain
def test_ordered_subnodes_hierarchy(): first_node = PrimaryNode('knn') second_node = PrimaryNode('knn') third_node = SecondaryNode('lda', nodes_from=[first_node, second_node]) root = SecondaryNode('logit', nodes_from=[third_node]) ordered_nodes = root.ordered_subnodes_hierarchy() assert len(ordered_nodes) == 4
def test_distance_to_primary_level(): first_node = PrimaryNode('knn') second_node = PrimaryNode('knn') third_node = SecondaryNode('lda', nodes_from=[first_node, second_node]) root = SecondaryNode('logit', nodes_from=[third_node]) distance = root.distance_to_primary_level assert distance == 2
def default_valid_chain(): first = PrimaryNode(model_type='logit') second = SecondaryNode(model_type='logit', nodes_from=[first]) third = SecondaryNode(model_type='logit', nodes_from=[first]) final = SecondaryNode(model_type='logit', nodes_from=[second, third]) chain = Chain(final) return chain
def chain_with_pca() -> Chain: node_scaling = PrimaryNode('scaling') node_pca = SecondaryNode('pca', nodes_from=[node_scaling]) node_lda = SecondaryNode('lda', nodes_from=[node_scaling]) node_final = SecondaryNode('rf', nodes_from=[node_pca, node_lda]) chain = Chain(node_final) return chain
def chain_simple() -> Chain: node_scaling = PrimaryNode('scaling') node_svc = SecondaryNode('svc', nodes_from=[node_scaling]) node_lda = SecondaryNode('lda', nodes_from=[node_scaling]) node_final = SecondaryNode('rf', nodes_from=[node_svc, node_lda]) chain = Chain(node_final) return chain
def chain_with_cycle(): first = PrimaryNode(operation_type='logit') second = SecondaryNode(operation_type='logit', nodes_from=[first]) third = SecondaryNode(operation_type='logit', nodes_from=[second, first]) second.nodes_from.append(third) chain = Chain() for node in [first, second, third]: chain.add_node(node) return chain
def chain_with_multiple_roots(): first = PrimaryNode(operation_type='logit') root_first = SecondaryNode(operation_type='logit', nodes_from=[first]) root_second = SecondaryNode(operation_type='logit', nodes_from=[first]) chain = Chain() for node in [first, root_first, root_second]: chain.add_node(node) return chain
def chain_with_isolated_components(): first = PrimaryNode(operation_type='logit') second = SecondaryNode(operation_type='logit', nodes_from=[first]) third = SecondaryNode(operation_type='logit', nodes_from=[]) fourth = SecondaryNode(operation_type='logit', nodes_from=[third]) chain = Chain() for node in [first, second, third, fourth]: chain.add_node(node) return chain
def test_secondary_nodes_is_invariant_to_inputs_order(data_setup): data = data_setup train, test = train_test_data_setup(data) first = PrimaryNode(operation_type='logit') second = PrimaryNode(operation_type='lda') third = PrimaryNode(operation_type='knn') final = SecondaryNode(operation_type='xgboost', nodes_from=[first, second, third]) chain = Chain() for node in [first, second, third, final]: chain.add_node(node) first = deepcopy(first) second = deepcopy(second) third = deepcopy(third) final_shuffled = SecondaryNode(operation_type='xgboost', nodes_from=[third, first, second]) chain_shuffled = Chain() # change order of nodes in list for node in [final_shuffled, third, first, second]: chain_shuffled.add_node(node) train_predicted = chain.fit(input_data=train) train_predicted_shuffled = chain_shuffled.fit(input_data=train) # train results should be invariant assert chain.root_node.descriptive_id == chain_shuffled.root_node.descriptive_id assert np.equal(train_predicted.predict, train_predicted_shuffled.predict).all() test_predicted = chain.predict(input_data=test) test_predicted_shuffled = chain_shuffled.predict(input_data=test) # predict results should be invariant assert np.equal(test_predicted.predict, test_predicted_shuffled.predict).all() # change parents order for the nodes fitted chain nodes_for_change = chain.nodes[3].nodes_from chain.nodes[3].nodes_from = [ nodes_for_change[2], nodes_for_change[0], nodes_for_change[1] ] chain.nodes[3].unfit() chain.fit(train) test_predicted_re_shuffled = chain.predict(input_data=test) # predict results should be invariant assert np.equal(test_predicted.predict, test_predicted_re_shuffled.predict).all()
def chain_with_isolated_nodes(): first = PrimaryNode(model_type='logit') second = SecondaryNode(model_type='logit', nodes_from=[first]) third = SecondaryNode(model_type='logit', nodes_from=[second]) isolated = SecondaryNode(model_type='logit', nodes_from=[]) chain = Chain() for node in [first, second, third, isolated]: chain.add_node(node) return chain
def get_composite_multiscale_chain(): chain = Chain() node_trend = PrimaryNode('trend_data_model') node_lstm_trend = SecondaryNode('ridge', nodes_from=[node_trend]) node_residual = PrimaryNode('residual_data_model') node_ridge_residual = SecondaryNode('ridge', nodes_from=[node_residual]) node_final = SecondaryNode( 'linear', nodes_from=[node_ridge_residual, node_lstm_trend]) chain.add_node(node_final) return chain
def valid_chain(): first = PrimaryNode(operation_type='logit') second = SecondaryNode(operation_type='logit', nodes_from=[first]) third = SecondaryNode(operation_type='logit', nodes_from=[second]) last = SecondaryNode(operation_type='logit', nodes_from=[third]) chain = Chain() for node in [first, second, third, last]: chain.add_node(node) return chain
def test_delete_node_with_redirection(): first = PrimaryNode(operation_type='logit') second = PrimaryNode(operation_type='lda') third = SecondaryNode(operation_type='knn', nodes_from=[first, second]) final = SecondaryNode(operation_type='xgboost', nodes_from=[third]) chain = Chain() chain.add_node(final) chain.delete_node(third) assert len(chain.nodes) == 3 assert first in chain.root_node.nodes_from
def test_update_node_in_chain_raise_exception(): first = PrimaryNode(operation_type='logit') final = SecondaryNode(operation_type='xgboost', nodes_from=[first]) chain = Chain() chain.add_node(final) replacing_node = SecondaryNode('logit') with pytest.raises(ValueError) as exc: chain.update_node(old_node=first, new_node=replacing_node) assert str(exc.value) == "Can't update PrimaryNode with SecondaryNode"
def create_classification_chain_with_preprocessing(): node_scaling = PrimaryNode('scaling') node_rfe = PrimaryNode('rfe_lin_class') xgb_node = SecondaryNode('xgboost', nodes_from=[node_scaling]) logit_node = SecondaryNode('logit', nodes_from=[node_rfe]) knn_root = SecondaryNode('knn', nodes_from=[xgb_node, logit_node]) chain = Chain(knn_root) return chain