def _test_adjoint(J, f): import numpy.random tape = Tape() set_working_tape(tape) V = f.function_space() h = Function(V) h.vector()[:] = numpy.random.rand(V.dim()) eps_ = [0.01 / 2.0**i for i in range(5)] residuals = [] for eps in eps_: Jp = J(f + eps * h) tape.clear_tape() Jm = J(f) Jm.adj_value = 1.0 tape.evaluate_adj() dJdf = f.adj_value residual = abs(Jp - Jm - eps * dJdf.inner(h.vector())) residuals.append(residual) r = convergence_rates(residuals, eps_) print(r) print(residuals) tol = 1E-1 assert (r[-1] > 2 - tol)
def _test_adjoint_function_boundary(J, bc, f): import numpy.random tape = Tape() set_working_tape(tape) V = f.function_space() h = Function(V) h.vector()[:] = 1 # numpy.random.rand(V.dim()) g = Function(V) eps_ = [0.4 / 2.0**i for i in range(4)] residuals = [] for eps in eps_: #f = bc.value() g.vector()[:] = f.vector()[:] + eps * h.vector()[:] bc.set_value(g) Jp = J(bc) tape.clear_tape() bc.set_value(f) Jm = J(bc) Jm.adj_value = 1.0 tape.evaluate_adj() dJdbc = bc.adj_value residual = abs(Jp - Jm - eps * dJdbc.inner(h.vector())) residuals.append(residual) r = convergence_rates(residuals, eps_) print(r) tol = 1E-1 assert (r[-1] > 2 - tol)
def xtest_wrt_function_dirichlet_boundary(): mesh = UnitSquareMesh(10, 10) V = FunctionSpace(mesh, "CG", 1) u = TrialFunction(V) u_ = Function(V) v = TestFunction(V) class Up(SubDomain): def inside(self, x, on_boundary): return near(x[1], 1) class Down(SubDomain): def inside(self, x, on_boundary): return near(x[1], 0) class Left(SubDomain): def inside(self, x, on_boundary): return near(x[0], 0) class Right(SubDomain): def inside(self, x, on_boundary): return near(x[0], 1) left = Left() right = Right() up = Up() down = Down() boundary = MeshFunction("size_t", mesh, mesh.geometric_dimension() - 1) boundary.set_all(0) up.mark(boundary, 1) down.mark(boundary, 2) ds = Measure("ds", subdomain_data=boundary) bc_func = project(Expression("sin(x[1])", degree=1), V) bc1 = DirichletBC(V, bc_func, left) bc2 = DirichletBC(V, 2, right) bc = [bc1, bc2] g1 = Constant(2) g2 = Constant(1) f = Function(V) f.vector()[:] = 10 def J(bc): a = inner(grad(u), grad(v)) * dx L = inner(f, v) * dx + inner(g1, v) * ds(1) + inner(g2, v) * ds(2) solve(a == L, u_, [bc, bc2]) return assemble(u_**2 * dx) _test_adjoint_function_boundary(J, bc1, bc_func)
def J(f): u_1 = Function(V) u_1.vector()[:] = 1 a = u_1 * u * v * dx + dt * f * inner(grad(u), grad(v)) * dx L = u_1 * v * dx # Time loop t = dt while t <= T: solve(a == L, u_, bc) u_1.assign(u_) t += dt return assemble(u_1**2 * dx)
def test_nonlinear_problem(): mesh = IntervalMesh(10, 0, 1) V = FunctionSpace(mesh, "Lagrange", 1) f = Function(V) f.vector()[:] = 1 u = Function(V) v = TestFunction(V) bc = DirichletBC(V, Constant(1), "on_boundary") def J(f): a = f * inner(grad(u), grad(v)) * dx + u**2 * v * dx - f * v * dx L = 0 solve(a == L, u, bc) return assemble(u**2 * dx) _test_adjoint(J, f)
def test_solver_ident_zeros(): """ Test using ident zeros to restrict half of the domain """ from fenics_adjoint import (UnitSquareMesh, Function, assemble, solve, project, Expression, DirichletBC) mesh = UnitSquareMesh(10, 10) cf = MeshFunction("size_t", mesh, mesh.topology().dim(), 0) top_half().mark(cf, 1) ff = MeshFunction("size_t", mesh, mesh.topology().dim() - 1, 0) top_boundary().mark(ff, 1) dx = Measure("dx", domain=mesh, subdomain_data=cf) V = FunctionSpace(mesh, "CG", 1) u, v = TrialFunction(V), TestFunction(V) a = inner(grad(u), grad(v)) * dx(1) w = Function(V) with stop_annotating(): w.assign(project(Expression("x[0]", degree=1), V)) rhs = w**3 * v * dx(1) A = assemble(a, keep_diagonal=True) A.ident_zeros() b = assemble(rhs) bc = DirichletBC(V, Constant(1), ff, 1) bc.apply(A, b) uh = Function(V) solve(A, uh.vector(), b, "umfpack") J = assemble(inner(uh, uh) * dx(1)) Jhat = ReducedFunctional(J, Control(w)) with stop_annotating(): w1 = project(Expression("x[0]*x[1]", degree=2), V) results = taylor_to_dict(Jhat, w, w1) assert (min(results["R0"]["Rate"]) > 0.95) assert (min(results["R1"]["Rate"]) > 1.95) assert (min(results["R2"]["Rate"]) > 2.95)