# Nxy = 10 # Dt = 2.5e-3 # t0, tf = 0.0, 7.0 # high frequency: fpeak = 4.0 # Hz Nxy = 100 Dt = 2.5e-4 t0, tf = 0.0, 2.0 # parameters cmin = 2.0 cmax = 3.0 epsmin = -1.0 # medium perturbation epsmax = 1.0 # medium perturbation h = 1.0 / Nxy r = 2 checkdt(Dt, h, r, cmax + epsmax, True) # mesh mesh = dl.UnitSquareMesh(Nxy, Nxy) Vl, V = dl.FunctionSpace(mesh, "Lagrange", 1), dl.FunctionSpace(mesh, "Lagrange", r) fctV = dl.Function(V) fctVl = dl.Function(Vl) # set up plots: filename, ext = splitext(sys.argv[0]) if isdir(filename + "/"): rmtree(filename + "/") myplot = PlotFenics(filename) # source: Ricker = RickerWavelet(fpeak, 1e-10) Pt = PointSources(V, [[0.5, 1.0]]) mydelta = Pt[0].array()
for ii in range(1, 10)] + [[ii / 10., 0.0] for ii in range(1, 10)] Pt = PointSources(V, srcloc) src = dl.Function(V) srcv = src.vector() mysrc = [Ricker, Pt, srcv] # target medium: b_target = dl.Expression(\ '1.0 + 1.0*(x[0]<=0.7)*(x[0]>=0.3)*(x[1]<=0.7)*(x[1]>=0.3)') b_target_fn = dl.interpolate(b_target, Vm) a_target = dl.Expression(\ '1.0 + 0.4*(x[0]<=0.7)*(x[0]>=0.3)*(x[1]<=0.7)*(x[1]>=0.3)') a_target_fn = dl.interpolate(a_target, Vm) checkdt(Dt, 1. / Nxy, r, np.sqrt(2.0), False) # observation operator: obspts = [[0.0, ii/10.] for ii in range(1,10)] + \ [[1.0, ii/10.] for ii in range(1,10)] + \ [[ii/10., 0.0] for ii in range(1,10)] + \ [[ii/10., 1.0] for ii in range(1,10)] obsop = TimeObsPtwise({'V': V, 'Points': obspts}, [t0, t1, t2, tf]) # define pde operator: wavepde = AcousticWave({'V': V, 'Vm': Vm}) wavepde.timestepper = 'backward' wavepde.lump = True wavepde.update({'a':a_target_fn, 'b':b_target_fn, \ 't0':t0, 'tf':tf, 'Dt':Dt, 'u0init':dl.Function(V), 'utinit':dl.Function(V)})
Nxy = 100 Dt = 5e-4 #Dt = h/(r*alpha*c_max) tf = 2.0 mytf = TimeFilter([0.0, 0.2, tf - 0.2, tf]) #fpeak = .4 # 4Hz => up to 10Hz in input signal #Nxy = 10 #Dt = 1e-4 #Dt = h/(r*alpha*c_max) #tf = 7.0 #mytf = TimeFilter([0.,1.,6.,tf]) mesh = UnitSquareMesh(Nxy, Nxy) h = 1. / Nxy Vl = FunctionSpace(mesh, 'Lagrange', 1) r = 2 checkdt(Dt, h, r, 2.0, False) # Source term: Ricker = RickerWavelet(fpeak, 1e-10) # Boundary conditions: #class AllFour(SubDomain): # def inside(self, x, on_boundary): # return on_boundary V = FunctionSpace(mesh, 'Lagrange', r) Pt = PointSources(V, [[.5, 1.]]) mydelta = Pt[0] src = Function(V) srcv = src.vector()
def run_test(fpeak, lambdamin, lambdamax, Nxy, tfilterpts, r, Dt, skip): h = 1. / Nxy checkdt(Dt, h, r, np.sqrt(lambdamax), True) mesh = dl.UnitSquareMesh(Nxy, Nxy) Vl = dl.FunctionSpace(mesh, 'Lagrange', 1) V = dl.FunctionSpace(mesh, 'Lagrange', r) fctV = dl.Function(V) # set up plots: filename, ext = splitext(sys.argv[0]) if isdir(filename + '/'): rmtree(filename + '/') myplot = PlotFenics(filename) # source: Ricker = RickerWavelet(fpeak, 1e-10) Pt = PointSources(V, [[0.5, 0.5]]) mydelta = Pt[0].array() def mysrc(tt): return Ricker(tt) * mydelta # target medium: lambda_target = dl.Expression('lmin + x[0]*(lmax-lmin)', \ lmin=lambdamin, lmax=lambdamax) lambda_target_fn = dl.interpolate(lambda_target, Vl) myplot.set_varname('lambda_target') myplot.plot_vtk(lambda_target_fn) # initial medium: lambda_init = dl.Constant(lambdamin) lambda_init_fn = dl.interpolate(lambda_init, Vl) myplot.set_varname('lambda_init') myplot.plot_vtk(lambda_init_fn) # observation operator: #obspts = [[0.2, 0.5], [0.5, 0.2], [0.5, 0.8], [0.8, 0.5]] obspts = [[0.2, ii/10.] for ii in range(2,9)] + \ [[0.8, ii/10.] for ii in range(2,9)] + \ [[ii/10., 0.2] for ii in range(3,8)] + \ [[ii/10., 0.8] for ii in range(3,8)] obsop = TimeObsPtwise({'V': V, 'Points': obspts}, tfilterpts) # define pde operator: wavepde = AcousticWave({'V': V, 'Vl': Vl, 'Vr': Vl}) wavepde.timestepper = 'backward' wavepde.lump = True wavepde.set_abc(mesh, LeftRight(), True) wavepde.update({'lambda':lambda_target_fn, 'rho':1.0, \ 't0':t0, 'tf':tf, 'Dt':Dt, 'u0init':dl.Function(V), 'utinit':dl.Function(V)}) wavepde.ftime = mysrc # define objective function: waveobj = ObjectiveAcoustic(wavepde) waveobj.obsop = obsop # data print 'generate data' waveobj.solvefwd() myplot.plot_timeseries(waveobj.solfwd, 'pd', 0, skip, fctV) dd = waveobj.Bp.copy() # gradient print 'generate observations' waveobj.dd = dd waveobj.update_m(lambda_init_fn) waveobj.solvefwd_cost() cost1 = waveobj.misfit print 'misfit = {}'.format(waveobj.misfit) myplot.plot_timeseries(waveobj.solfwd, 'p', 0, skip, fctV) # Plot data and observations fig = plt.figure() if len(obspts) > 9: fig.set_size_inches(20., 15.) for ii in range(len(obspts)): if len(obspts) == 4: ax = fig.add_subplot(2, 2, ii + 1) else: ax = fig.add_subplot(4, 6, ii + 1) ax.plot(waveobj.PDE.times, waveobj.dd[ii, :], 'k--') ax.plot(waveobj.PDE.times, waveobj.Bp[ii, :], 'b') ax.set_title('Plot' + str(ii)) fig.savefig(filename + '/observations.eps') print 'compute gradient' waveobj.solveadj_constructgrad() myplot.plot_timeseries(waveobj.soladj, 'v', 0, skip, fctV) MG = waveobj.MGv.array().copy() myplot.set_varname('grad') myplot.plot_vtk(waveobj.Grad) """
#Nxy = 100 #Dt = 5e-4 #Dt = h/(r*alpha*c_max) #tf = 1.4 #mytf = TimeFilter([0.,.2,1.2,1.4]) fpeak = .4 # 4Hz => up to 10Hz in input signal Nxy = 10 Dt = 1e-4 #Dt = h/(r*alpha*c_max) tf = 7.0 mytf = TimeFilter([0.,1.,6.,tf]) mesh = UnitSquareMesh(Nxy, Nxy) h = 1./Nxy Vl = FunctionSpace(mesh, 'Lagrange', 1) r = 2 checkdt(Dt, h, r, 2.0, True) # Source term: Ricker = RickerWavelet(fpeak, 1e-10) # Boundary conditions: #class AllFour(SubDomain): # def inside(self, x, on_boundary): # return on_boundary V = FunctionSpace(mesh, 'Lagrange', r) Pt = PointSources(V, [[.5,1.]]) mydelta = Pt[0].array() def mysrc(tt): return Ricker(tt)*mydelta # Computation: if myrank == 0: print '\n\th = {}, Dt = {}'.format(h, Dt)
#srcloc = [[0.5,1.0]] #srcloc = [[ii/10., 1.0] for ii in range(1,10)] + [[ii/10., 0.0] for ii in range(1,10)] srcloc = [[ii / 10., 1.0] for ii in range(3, 8, 2)] Pt = PointSources(V, srcloc) src = dl.Function(V) srcv = src.vector() mysrc = [Ricker, Pt, srcv] # target medium: b_target = dl.Expression(\ '1.0 + 1.0*(x[0]<=0.7)*(x[0]>=0.3)*(x[1]<=0.7)*(x[1]>=0.3)') b_target_fn = dl.interpolate(b_target, Vm) a_target = dl.Expression('1.0') a_target_fn = dl.interpolate(a_target, Vm) checkdt(Dt, 1. / Nxy, r, np.sqrt(2.0), True) # observation operator: obspts = [[0.0, ii/10.] for ii in range(1,10)] + \ [[1.0, ii/10.] for ii in range(1,10)] + \ [[ii/10., 0.0] for ii in range(1,10)] + \ [[ii/10., 1.0] for ii in range(1,10)] obsop = TimeObsPtwise({'V': V, 'Points': obspts}, [t0, t1, t2, tf]) # define pde operator: if mpirank == 0: print 'define wave pde' wavepde = AcousticWave({'V': V, 'Vm': Vm}) wavepde.timestepper = 'backward' wavepde.lump = True wavepde.update({'a':a_target_fn, 'b':b_target_fn, \ 't0':t0, 'tf':tf, 'Dt':Dt, 'u0init':dl.Function(V), 'utinit':dl.Function(V)})
def run_test(fpeak, lambdamin, lambdamax, Nxy, tfilterpts, r, Dt, skip): h = 1./Nxy checkdt(Dt, h, r, np.sqrt(lambdamax), True) mesh = dl.UnitSquareMesh(Nxy, Nxy) Vl = dl.FunctionSpace(mesh, 'Lagrange', 1) V = dl.FunctionSpace(mesh, 'Lagrange', r) fctV = dl.Function(V) # set up plots: filename, ext = splitext(sys.argv[0]) if isdir(filename + '/'): rmtree(filename + '/') myplot = PlotFenics(filename) # source: Ricker = RickerWavelet(fpeak, 1e-10) Pt = PointSources(V, [[0.5,0.5]]) mydelta = Pt[0].array() def mysrc(tt): return Ricker(tt)*mydelta # target medium: lambda_target = dl.Expression('lmin + x[0]*(lmax-lmin)', \ lmin=lambdamin, lmax=lambdamax) lambda_target_fn = dl.interpolate(lambda_target, Vl) myplot.set_varname('lambda_target') myplot.plot_vtk(lambda_target_fn) # initial medium: lambda_init = dl.Constant(lambdamin) lambda_init_fn = dl.interpolate(lambda_init, Vl) myplot.set_varname('lambda_init') myplot.plot_vtk(lambda_init_fn) # observation operator: #obspts = [[0.2, 0.5], [0.5, 0.2], [0.5, 0.8], [0.8, 0.5]] obspts = [[0.2, ii/10.] for ii in range(2,9)] + \ [[0.8, ii/10.] for ii in range(2,9)] + \ [[ii/10., 0.2] for ii in range(3,8)] + \ [[ii/10., 0.8] for ii in range(3,8)] obsop = TimeObsPtwise({'V':V, 'Points':obspts}, tfilterpts) # define pde operator: wavepde = AcousticWave({'V':V, 'Vl':Vl, 'Vr':Vl}) wavepde.timestepper = 'centered' wavepde.lump = True wavepde.set_abc(mesh, LeftRight(), True) wavepde.update({'lambda':lambda_target_fn, 'rho':1.0, \ 't0':t0, 'tf':tf, 'Dt':Dt, 'u0init':dl.Function(V), 'utinit':dl.Function(V)}) wavepde.ftime = mysrc # define objective function: waveobj = ObjectiveAcoustic(wavepde) waveobj.obsop = obsop # data print 'generate noisy data' waveobj.solvefwd() myplot.plot_timeseries(waveobj.solfwd, 'pd', 0, skip, fctV) dd = waveobj.Bp.copy() nbobspt, dimsol = dd.shape noiselevel = 0.1 # = 10% sigmas = np.sqrt((dd**2).sum(axis=1)/dimsol)*noiselevel rndnoise = np.random.randn(nbobspt*dimsol).reshape((nbobspt, dimsol)) waveobj.dd = dd + sigmas.reshape((len(sigmas),1))*rndnoise # gradient print 'generate observations' waveobj.update_m(lambda_init_fn) waveobj.solvefwd_cost() cost1 = waveobj.misfit print 'misfit = {}'.format(waveobj.misfit) myplot.plot_timeseries(waveobj.solfwd, 'p', 0, skip, fctV) # Plot data and observations fig = plt.figure() if len(obspts) > 9: fig.set_size_inches(20., 15.) for ii in range(len(obspts)): if len(obspts) == 4: ax = fig.add_subplot(2,2,ii+1) else: ax = fig.add_subplot(4,6,ii+1) ax.plot(waveobj.PDE.times, waveobj.dd[ii,:], 'k--') ax.plot(waveobj.PDE.times, waveobj.Bp[ii,:], 'b') ax.set_title('Plot'+str(ii)) fig.savefig(filename + '/observations.eps') print 'compute gradient' waveobj.solveadj_constructgrad() myplot.plot_timeseries(waveobj.soladj, 'v', 0, skip, fctV) MG = waveobj.MGv.array().copy() myplot.set_varname('grad') myplot.plot_vtk(waveobj.Grad) print 'check gradient with FD' Medium = np.zeros((5, Vl.dim())) for ii in range(5): smoothperturb = dl.Expression('sin(n*pi*x[0])*sin(n*pi*x[1])', n=ii+1) smoothperturb_fn = dl.interpolate(smoothperturb, Vl) Medium[ii,:] = smoothperturb_fn.vector().array() checkgradfd_med(waveobj, Medium, 1e-6, [1e-5, 1e-4]) print 'check Hessian with FD' checkhessfd_med(waveobj, Medium, 1e-6, [1e-1, 1e-2, 1e-3, 1e-4, 1e-5], False)