def main(): usage = "usage: %(prog)s [config file]" description = "Run fermipy analysis chain." parser = argparse.ArgumentParser(usage=usage, description=description) parser.add_argument('--config', default='sample_config.yaml') parser.add_argument('--source', default=None) args = parser.parse_args() gta = GTAnalysis(args.config) if args.source is None: src_name = gta.roi.sources[0].name gta.setup() gta.optimize() loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True) model = {'Index': 2.0, 'SpatialModel': 'PointSource'} srcs = gta.find_sources(model=model, sqrt_ts_threshold=5.0, min_separation=0.5) sed = gta.sed(src_name, free_radius=1.0, make_plots=True) gta.tsmap(make_plots=True) gta.write_roi('fit0') lc = gta.lightcurve(src_name, binsz=86400. * 7.0, free_radius=3.0, use_scaled_srcmap=True, multithread=False)
def main(): usage = "usage: %(prog)s [config file]" description = "Run fermipy analysis chain." parser = argparse.ArgumentParser(usage=usage,description=description) parser.add_argument('--config', default = 'sample_config.yaml') parser.add_argument('--source', default = None) args = parser.parse_args() gta = GTAnalysis(args.config) if args.source is None: src_name = gta.roi.sources[0].name gta.setup() gta.optimize() if (gta.roi[src_name]['ts'] > 1000. and gta.roi[src_name]['SpectrumType'] == 'PowerLaw'): gta.set_source_spectrum(src_name, spectrum_type='LogParabola', spectrum_pars={'beta' : {'value' : 0.0, 'scale' : 1.0, 'min' : 0.0, 'max' : 2.0}}) gta.free_source(src_name) gta.fit() gta.free_source(src_name, False) loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True) model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'} srcs = gta.find_sources(model=model, sqrt_ts_threshold=5.0, min_separation=0.5) sed = gta.sed(src_name, free_radius=1.0, make_plots=True) gta.tsmap(make_plots=True) gta.tsmap(prefix='excludeSource', exclude=[src_name], make_plots=True) gta.write_roi('fit0') lc = gta.lightcurve(src_name, binsz=86400.*28.0, free_radius=3.0, use_scaled_srcmap=True, multithread=False)
def main(): usage = "usage: %(prog)s [config file]" description = "Run fermipy analysis chain." parser = argparse.ArgumentParser(usage=usage, description=description) parser.add_argument('--config', default='sample_config.yaml') parser.add_argument('--source', default=None) args = parser.parse_args() gta = GTAnalysis(args.config) if args.source is None: src_name = gta.roi.sources[0].name gta.setup() gta.optimize() loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True) model = {'Index': 2.0, 'SpatialModel': 'PointSource'} srcs = gta.find_sources(model=model, sqrt_ts_threshold=5.0, min_separation=0.5) sed = gta.sed(src_name, free_radius=1.0, make_plots=True) gta.tsmap(make_plots=True) gta.write_roi('fit0') # make sure bins are shifted to line up with the end of the time window (where the neutrino arrived) tmax = 528835414 LCbins = tmax - 119 * 28 * 24 * 3600 + numpy.linspace(0, 119, 120) * 28 * 24 * 3600 lc = gta.lightcurve(src_name, time_bins=list(LCbins), free_radius=3.0, use_scaled_srcmap=True, multithread=False, shape_ts_threshold=100)
def main(): usage = "usage: %(prog)s -c config.yaml" description = "Run the lc analysis" parser = argparse.ArgumentParser(usage=usage, description=description) parser.add_argument('-c', '--conf', required=True) parser.add_argument('-i', required=False, default=0, help='Set local or scratch calculation', type=int) parser.add_argument('--state', help='analysis state', choices=['avgspec', 'setup'], default='avgspec') parser.add_argument('--forcepl', default=0, help='Force the target source to have power-law shape', type=int) parser.add_argument('--createsed', default=0, help='Create SED from best fit model', type=int) parser.add_argument( '--adaptive', default=0, help='Use adaptive binning for minute scale light curves', type=int) parser.add_argument('--srcprob', default = 0, help='Calculate the source probability for the photons,' \ ' only works when no sub orbit time scales are used', type=int) parser.add_argument( '--mincounts', default=2, help='Minimum number of counts within LC bin to run analysis', type=int) parser.add_argument('--simulate', default = None, help='None or full path to yaml file which contains src name' \ 'and spec to be simulated', ) parser.add_argument( '--make_plots', default=0, type=int, help='Create sed plot', ) parser.add_argument( '--randomize', default=1, help= 'If you simulate, use Poisson realization. If false, use Asimov data set', type=int) args = parser.parse_args() utils.init_logging('DEBUG') config = yaml.load(open(args.conf)) tmpdir, job_id = lsf.init_lsf() if not job_id: job_id = args.i logging.info('tmpdir: {0:s}, job_id: {1:n}'.format(tmpdir, job_id)) os.chdir(tmpdir) # go to tmp directory logging.info('Entering directory {0:s}'.format(tmpdir)) logging.info('PWD is {0:s}'.format(os.environ["PWD"])) # copy the ft1,ft2 and ltcube files #for k in ['evfile','scfile','ltcube']: # don't stage them, done automatically by fermipy if needed # config[k] = utils.copy2scratch(config[k], tmpdir) # set the scratch directories logging.debug(config['data']) config['fileio']['scratchdir'] = tmpdir # set the log file logdir = copy.deepcopy(config['fileio']['logfile']) config['fileio']['logfile'] = path.join(tmpdir, 'fermipy.log') # debugging: all files will be saved (default is False) #config['fileio']['savefits'] = True # if simulating an orbit, save fits files if args.simulate is not None: config['fileio']['savefits'] = True # copy all fits files already present in outdir # run the analysis lc_config = copy.deepcopy(config['lightcurve']) fit_config = copy.deepcopy(config['fit_pars']) # remove parameters from config file not accepted by fermipy for k in ['configname', 'tmp', 'log', 'fit_pars']: config.pop(k, None) if 'adaptive' in config['lightcurve'].keys(): config['lightcurve'].pop('adaptive', None) # set the correct time bin config['selection']['tmin'], config['selection']['tmax'], nj = set_lc_bin( config['selection']['tmin'], config['selection']['tmax'], config['lightcurve']['binsz'], job_id - 1 if job_id > 0 else 0, ft1=config['data']['evfile']) logging.debug('setting light curve bin' + \ '{0:n}, between {1[tmin]:.0f} and {1[tmax]:.0f}'.format(job_id, config['selection'])) if args.adaptive: config['fileio']['outdir'] = utils.mkdir( path.join(config['fileio']['outdir'], 'adaptive{0:.0f}/'.format(lc_config['adaptive']))) if args.state == 'setup': config['fileio']['outdir'] = utils.mkdir( path.join(config['fileio']['outdir'], 'setup{0:05n}/'.format(job_id if job_id > 0 else 1))) else: config['fileio']['outdir'] = utils.mkdir( path.join(config['fileio']['outdir'], '{0:05n}/'.format(job_id if job_id > 0 else 1))) logging.info('Starting with fermipy analysis') logging.info('using fermipy version {0:s}'.format(fermipy.__version__)) logging.info('located at {0:s}'.format(fermipy.__file__)) if config['data']['ltcube'] == '': config['data'].pop('ltcube', None) compute_sub_gti_lc = False if type(config['lightcurve']['binsz']) == str: if len(config['lightcurve']['binsz'].strip('gti')): compute_sub_gti_lc = True if config['lightcurve']['binsz'].find('min') > 0: config['lightcurve']['binsz'] = float( config['lightcurve']['binsz'].strip('gti').strip( 'min')) * 60. logging.info("set time bin length to {0:.2f}s".format( config['lightcurve']['binsz'])) else: config['lightcurve']['binsz'] = 3. * 3600. try: gta = GTAnalysis(config, logging={'verbosity': 3}) except Exception as e: logging.error("{0}".format(e)) config['selection']['target'] = None gta = GTAnalysis(config, logging={'verbosity': 3}) sep = gta.roi.sources[0]['offset'] logging.warning( "Source closets to ROI center is {0:.3f} degree away".format(sep)) if sep < 0.1: config['selection']['target'] = gta.roi.sources[0]['name'] gta.config['selection']['target'] = config['selection']['target'] logging.info("Set target to {0:s}".format( config['selection']['target'])) # stage the full time array analysis results to the tmp dir # do not copy png images files = [ fn for fn in glob(fit_config['avgspec']) if fn.find('.xml') > 0 or fn.find('.npy') > 0 ] files += [config['data']['evfile']] utils.copy2scratch(files, gta.workdir) # we're using actual data if args.simulate is None: # check before the analysis start if there are any events in the master file # in the specified time range logging.info('Checking for events in initial ft1 file') t = Table.read(path.join(gta.workdir, path.basename(config['data']['evfile'])), hdu='EVENTS') logging.info("times in base ft1: {0} {1} {2}".format( t["TIME"].max(), t["TIME"].min(), t["TIME"].max() - t["TIME"].min())) m = (t["TIME"] >= config['selection']['tmin']) & ( t["TIME"] <= config['selection']['tmax']) if np.sum(m) < args.mincounts + 1: logging.error( "*** Only {0:n} events between tmin and tmax! Exiting".format( np.sum(m))) assert np.sum(m) > args.mincounts else: logging.info("{0:n} events between tmin and tmax".format( np.sum(m))) # check how many bins are in each potential light curve bin if compute_sub_gti_lc: # select time of first and last # photon instead of GTI time m = (t["TIME"] >= config['selection']['tmin']) & \ (t["TIME"] <= config['selection']['tmax']) tmin = t["TIME"][m].min() - 1. tmax = t["TIME"][m].max() + 1. logging.info("There will be up to {0:n} time bins".format(np.ceil( (tmax - tmin) / \ config['lightcurve']['binsz']))) bins = np.arange(tmin, tmax, config['lightcurve']['binsz']) bins = np.concatenate([bins, [config['selection']['tmax']]]) counts = calc_counts(t, bins) # remove the starting times of the bins with zero counts # and rebin the data logging.info("Counts before rebinning: {0}".format(counts)) mincounts = 10. mc = counts < mincounts if np.sum(mc): # remove trailing zeros if np.any(counts == 0.): mcounts_post, mcounts_pre = rm_trailing_zeros(counts) counts = counts[mcounts_post & mcounts_pre] bins = np.concatenate([ bins[:-1][mcounts_post & mcounts_pre], [bins[1:][mcounts_post & mcounts_pre].max()] ]) bins = rebin(counts, bins) logging.info("Bin lengths after rebinning: {0}".format( np.diff(bins))) logging.info("Bin times after rebinning: {0}".format(bins)) counts = calc_counts(t, bins) logging.info("Counts after rebinning: {0}".format(counts)) else: logging.info("Regular time binning will be used") bins = list(bins) logging.info('Running fermipy setup') try: gta.setup() except (RuntimeError, IndexError) as e: logging.error( 'Caught Runtime/Index Error while initializing analysis object') logging.error('Printing error:') logging.error(e) if e.message.find("File not found") >= 0 and e.message.find( 'srcmap') >= 0: logging.error("*** Srcmap calculation failed ***") if e.message.find("NDSKEYS") >= 0 and e.message.find('srcmap') >= 0: logging.error( "*** Srcmap calculation failed with NDSKEYS keyword not found in header ***" ) logging.info("Checking if there are events in ft1 file") ft1 = path.join(gta.workdir, 'ft1_00.fits') f = glob(ft1) if not len(f): logging.error( "*** no ft1 file found at location {0:s}".format(ft1)) raise t = Table.read(f[0], hdu='EVENTS') if not len(t): logging.error("*** The ft1 file contains no events!! ***".format( len(t))) else: logging.info("The ft1 file contains {0:n} event(s)".format(len(t))) return # end here if you only want to calulate # intermediate fits files if args.state == 'setup': return gta logging.info('Loading the fit for the average spectrum') gta.load_roi('avgspec') # reload the average spectral fit logging.info('Running fermipy optimize and fit') # we're using actual data if args.simulate is None: if args.forcepl: gta = set_src_spec_pl( gta, gta.get_source_name(config['selection']['target'])) # to do add EBL absorption at some stage ... # gta = add_ebl_atten(gta, gta.get_source_name(config['selection']['target']), fit_config['z']) # make sure you are fitting data gta.simulate_roi(restore=True) if compute_sub_gti_lc: if args.adaptive: # do import only here since root must be compiled from fermiAnalysis import adaptivebinning as ab # compute the exposure energy = 1000. texp, front, back = ab.comp_exposure_phi(gta, energy=1000.) # compute the bins result = ab.time_bins( gta, texp, 0.5 * (front + back), #critval = 20., # bins with ~20% unc critval=lc_config['adaptive'], Epivot=None, # compute on the fly # tstart = config['selection']['tmin'], # tstop = config['selection']['tmax'] ) # cut the bins to this GTI mask = result['tstop'] > config['selection']['tmin'] mask = mask & (result['tstart'] < config['selection']['tmax']) # try again with catalog values if not np.sum(mask): logging.error( "Adaptive bins outside time window, trying catalog values for flux" ) result = ab.time_bins( gta, texp, 0.5 * (front + back), critval=lc_config['adaptive'], # bins with ~20% unc Epivot=None, # compute on the fly forcecatalog=True, # tstart = config['selection']['tmin'], # tstop = config['selection']['tmax'] ) # cut the bins to this GTI mask = result['tstop'] > config['selection']['tmin'] mask = mask & (result['tstart'] < config['selection']['tmax']) if not np.sum(mask): logging.error( "Adaptive bins do not cover selected time interval!" ) logging.error("Using original bins") else: bins = np.concatenate((result['tstart'][mask], [result['tstop'][mask][-1]])) bins[0] = np.max( [config['selection']['tmin'], bins[0]]) bins[-1] = np.min( [config['selection']['tmax'], bins[-1]]) bins = list(bins) # removing trailing zeros counts = calc_counts(t, bins) mcounts_post, mcounts_pre = rm_trailing_zeros(counts) logging.info( "count masks: {0} {1}, bins: {2}, counts: {3}". format(mcounts_post, mcounts_pre, bins, counts)) counts = counts[mcounts_post & mcounts_pre] bins = np.concatenate([ np.array(bins)[:-1][mcounts_post & mcounts_pre], [ np.array(bins)[1:][mcounts_post & mcounts_pre].max() ] ]) logging.info( "Using bins {0}, total n={1:n} bins".format( bins, len(bins) - 1)) logging.info("bins widths : {0}".format(np.diff(bins))) logging.info("counts per bin: {0} ".format( calc_counts(t, bins))) bins = list(bins) # TODO: test that this is working also with GTIs that have little or no counts lc = gta.lightcurve( config['selection']['target'], binsz=config['lightcurve']['binsz'], free_background=config['lightcurve']['free_background'], free_params=config['lightcurve']['free_params'], free_radius=config['lightcurve']['free_radius'], make_plots=False, multithread=True, nthread=4, #multithread = False, #nthread = 1, save_bin_data=True, shape_ts_threshold=16., use_scaled_srcmap=True, use_local_ltcube=True, write_fits=True, write_npy=True, time_bins=bins, outdir='{0:.0f}s'.format(config['lightcurve']['binsz'])) else: # run the fitting of the entire time and energy range try: o = gta.optimize() # perform an initial fit logging.debug(o) except RuntimeError as e: logging.error("Error in optimize: {0}".format(e)) logging.info("Trying to continue ...") gta = set_free_pars_lc(gta, config, fit_config) f = gta.fit() if 'fix_sources' in fit_config.keys(): skip = fit_config['fix_sources'].keys() else: skip = [] gta, f = refit(gta, config['selection']['target'], f, fit_config['ts_fixed'], skip=skip) gta.print_roi() gta.write_roi('lc') if args.createsed: if args.make_plots: init_matplotlib_backend() gta.load_roi('lc') # reload the average spectral fit logging.info('Running sed for {0[target]:s}'.format( config['selection'])) sed = gta.sed(config['selection']['target'], prefix = 'lc_sed', free_radius = None if config['sed']['free_radius'] == 0. \ else config['sed']['free_radius'], free_background= config['sed']['free_background'], free_pars = fa.allnorm, make_plots = args.make_plots, cov_scale = config['sed']['cov_scale'], use_local_index = config['sed']['use_local_index'], bin_index = config['sed']['bin_index'] ) # debugging: calculate sed and resid maps for each light curve bin #logging.info('Running sed for {0[target]:s}'.format(config['selection'])) #sed = gta.sed(config['selection']['target'], prefix = 'lc') #model = {'Scale': 1000., 'Index' : fit_config['new_src_pl_index'], 'SpatialModel' : 'PointSource'} #resid_maps = gta.residmap('lc',model=model, make_plots=True, write_fits = True, write_npy = True) if args.srcprob: logging.info("Running srcprob with srcmdl {0:s}".format('lc')) gta.compute_srcprob(xmlfile='lc', overwrite=True) # we are simulating a source else: # TODO: I probably have to run the setup here. Do on weekly files, i.e., no time cut? Only do that later? with open(args.simulate) as f: simsource = np.load(f, allow_pickle=True).flat[0] # set the source to the simulation value gta.set_source_spectrum( simsource['target'], spectrum_type=simsource['spectrum_type'], spectrum_pars=simsource['spectrum_pars'][job_id - 1]) logging.info("changed spectral parameters to {0}".format( gta.roi.get_source_by_name(simsource['target']).spectral_pars)) # simulate the ROI gta.simulate_roi(randomize=bool(args.randomize)) gta = set_free_pars_lc(gta, config, fit_config) # fit the simulation f = gta.fit() gta, f = refit(gta, config['selection']['target'], f, fit_config['ts_fixed']) gta.print_roi() gta.write_roi('lc_simulate_{0:s}'.format(simsource['suffix'])) return gta