def main(overwrite=False): # convert input images into an hdf5 file if overwrite or not os.path.exists(config["data_file"]): create_data_file(config) data_file_opened = open_data_file(config["data_file"]) seg_loss_func = getattr(fetal_net.metrics, config['loss']) dis_loss_func = getattr(fetal_net.metrics, config['dis_loss']) # instantiate new model seg_model_func = getattr(fetal_net.model, config['model_name']) gen_model = seg_model_func( input_shape=config["input_shape"], initial_learning_rate=config["initial_learning_rate"], **{ 'dropout_rate': config['dropout_rate'], 'loss_function': seg_loss_func, 'mask_shape': None if config["weight_mask"] is None else config["input_shape"], 'old_model_path': config['old_model'] }) dis_model_func = getattr(fetal_net.model, config['dis_model_name']) dis_model = dis_model_func( input_shape=[config["input_shape"][0] + config["n_labels"]] + config["input_shape"][1:], initial_learning_rate=config["initial_learning_rate"], **{ 'dropout_rate': config['dropout_rate'], 'loss_function': dis_loss_func }) if not overwrite \ and len(glob.glob(config["model_file"] + 'g_*.h5')) > 0: # dis_model_path = get_last_model_path(config["model_file"] + 'dis_') gen_model_path = get_last_model_path(config["model_file"] + 'g_') # print('Loading dis model from: {}'.format(dis_model_path)) print('Loading gen model from: {}'.format(gen_model_path)) # dis_model = load_old_model(dis_model_path) # gen_model = load_old_model(gen_model_path) # dis_model.load_weights(dis_model_path) gen_model.load_weights(gen_model_path) gen_model.summary() dis_model.summary() # Build "frozen discriminator" frozen_dis_model = Network(dis_model.inputs, dis_model.outputs, name='frozen_discriminator') frozen_dis_model.trainable = False inputs_real = Input(shape=config["input_shape"]) inputs_fake = Input(shape=config["input_shape"]) segs_real = Activation(None, name='seg_real')(gen_model(inputs_real)) segs_fake = Activation(None, name='seg_fake')(gen_model(inputs_fake)) valid = Activation(None, name='dis')(frozen_dis_model( Concatenate(axis=1)([segs_fake, inputs_fake]))) combined_model = Model(inputs=[inputs_real, inputs_fake], outputs=[segs_real, valid]) combined_model.compile(loss=[seg_loss_func, 'binary_crossentropy'], loss_weights=[1, config["gd_loss_ratio"]], optimizer=Adam(config["initial_learning_rate"])) combined_model.summary() # get training and testing generators train_generator, validation_generator, n_train_steps, n_validation_steps = get_training_and_validation_generators( data_file_opened, batch_size=config["batch_size"], data_split=config["validation_split"], overwrite=overwrite, validation_keys_file=config["validation_file"], training_keys_file=config["training_file"], test_keys_file=config["test_file"], n_labels=config["n_labels"], labels=config["labels"], patch_shape=(*config["patch_shape"], config["patch_depth"]), validation_batch_size=config["validation_batch_size"], augment=config["augment"], skip_blank_train=config["skip_blank_train"], skip_blank_val=config["skip_blank_val"], truth_index=config["truth_index"], truth_size=config["truth_size"], prev_truth_index=config["prev_truth_index"], prev_truth_size=config["prev_truth_size"], truth_downsample=config["truth_downsample"], truth_crop=config["truth_crop"], patches_per_epoch=config["patches_per_epoch"], categorical=config["categorical"], is3d=config["3D"], drop_easy_patches_train=config["drop_easy_patches_train"], drop_easy_patches_val=config["drop_easy_patches_val"]) # get training and testing generators _, semi_generator, _, _ = get_training_and_validation_generators( data_file_opened, batch_size=config["batch_size"], data_split=config["validation_split"], overwrite=overwrite, validation_keys_file=config["validation_file"], training_keys_file=config["training_file"], test_keys_file=config["test_file"], n_labels=config["n_labels"], labels=config["labels"], patch_shape=(*config["patch_shape"], config["patch_depth"]), validation_batch_size=config["validation_batch_size"], val_augment=config["augment"], skip_blank_train=config["skip_blank_train"], skip_blank_val=config["skip_blank_val"], truth_index=config["truth_index"], truth_size=config["truth_size"], prev_truth_index=config["prev_truth_index"], prev_truth_size=config["prev_truth_size"], truth_downsample=config["truth_downsample"], truth_crop=config["truth_crop"], patches_per_epoch=config["patches_per_epoch"], categorical=config["categorical"], is3d=config["3D"], drop_easy_patches_train=config["drop_easy_patches_train"], drop_easy_patches_val=config["drop_easy_patches_val"]) # start training scheduler = Scheduler(config["dis_steps"], config["gen_steps"], init_lr=config["initial_learning_rate"], lr_patience=config["patience"], lr_decay=config["learning_rate_drop"]) best_loss = np.inf for epoch in range(config["n_epochs"]): postfix = {'g': None, 'd': None} # , 'val_g': None, 'val_d': None} with tqdm(range(n_train_steps // config["gen_steps"]), dynamic_ncols=True, postfix={ 'gen': None, 'dis': None, 'val_gen': None, 'val_dis': None, None: None }) as pbar: for n_round in pbar: # train D outputs = np.zeros(dis_model.metrics_names.__len__()) for i in range(scheduler.get_dsteps()): real_patches, real_segs = next(train_generator) semi_patches, _ = next(semi_generator) d_x_batch, d_y_batch = input2discriminator( real_patches, real_segs, semi_patches, gen_model.predict(semi_patches, batch_size=config["batch_size"]), dis_model.output_shape) outputs += dis_model.train_on_batch(d_x_batch, d_y_batch) if scheduler.get_dsteps(): outputs /= scheduler.get_dsteps() postfix['d'] = build_dsc(dis_model.metrics_names, outputs) pbar.set_postfix(**postfix) # train G (freeze discriminator) outputs = np.zeros(combined_model.metrics_names.__len__()) for i in range(scheduler.get_gsteps()): real_patches, real_segs = next(train_generator) semi_patches, _ = next(validation_generator) g_x_batch, g_y_batch = input2gan(real_patches, real_segs, semi_patches, dis_model.output_shape) outputs += combined_model.train_on_batch( g_x_batch, g_y_batch) outputs /= scheduler.get_gsteps() postfix['g'] = build_dsc(combined_model.metrics_names, outputs) pbar.set_postfix(**postfix) # evaluate on validation set dis_metrics = np.zeros(dis_model.metrics_names.__len__(), dtype=float) gen_metrics = np.zeros(gen_model.metrics_names.__len__(), dtype=float) evaluation_rounds = n_validation_steps for n_round in range(evaluation_rounds): # rounds_for_evaluation: val_patches, val_segs = next(validation_generator) # D if scheduler.get_dsteps() > 0: d_x_test, d_y_test = input2discriminator( val_patches, val_segs, val_patches, gen_model.predict( val_patches, batch_size=config["validation_batch_size"]), dis_model.output_shape) dis_metrics += dis_model.evaluate( d_x_test, d_y_test, batch_size=config["validation_batch_size"], verbose=0) # G # gen_x_test, gen_y_test = input2gan(val_patches, val_segs, dis_model.output_shape) gen_metrics += gen_model.evaluate( val_patches, val_segs, batch_size=config["validation_batch_size"], verbose=0) dis_metrics /= float(evaluation_rounds) gen_metrics /= float(evaluation_rounds) # save the model and weights with the best validation loss if gen_metrics[0] < best_loss: best_loss = gen_metrics[0] print('Saving Model...') with open( os.path.join( config["base_dir"], "g_{}_{:.3f}.json".format(epoch, gen_metrics[0])), 'w') as f: f.write(gen_model.to_json()) gen_model.save_weights( os.path.join( config["base_dir"], "g_{}_{:.3f}.h5".format(epoch, gen_metrics[0]))) postfix['val_d'] = build_dsc(dis_model.metrics_names, dis_metrics) postfix['val_g'] = build_dsc(gen_model.metrics_names, gen_metrics) # pbar.set_postfix(**postfix) print('val_d: ' + postfix['val_d'], end=' | ') print('val_g: ' + postfix['val_g']) # pbar.refresh() # update step sizes, learning rates scheduler.update_steps(epoch, gen_metrics[0]) K.set_value(dis_model.optimizer.lr, scheduler.get_lr()) K.set_value(combined_model.optimizer.lr, scheduler.get_lr()) data_file_opened.close()
import argparse from fetal_net.data import open_data_file parser = argparse.ArgumentParser() parser.add_argument("--data1_path", help="specifies model path", type=str, required=True) parser.add_argument("--data2_path", help="specifies model path", type=str, required=True) opts = parser.parse_args() ids_1 = open_data_file(opts.data1_path).root.subject_ids ids_2 = open_data_file(opts.data2_path).root.subject_ids print(all([i1 == i2 for i1, i2 in zip(ids_1, ids_2)]))
def main(overwrite=False): # convert input images into an hdf5 file if overwrite or not os.path.exists(config["data_file"]): create_data_file(config) data_file_opened = open_data_file(config["data_file"]) if not overwrite and len(glob.glob(config["model_file"] + '*.h5')) > 0: model_path = get_last_model_path(config["model_file"]) print('Loading model from: {}'.format(model_path)) model = load_old_model(model_path) else: # instantiate new model loss_func = getattr(fetal_net.metrics, config['loss']) model_func = getattr(fetal_net.model, config['model_name']) model = model_func( input_shape=config["input_shape"], initial_learning_rate=config["initial_learning_rate"], **{ 'dropout_rate': config['dropout_rate'], 'loss_function': loss_func, 'mask_shape': None if config["weight_mask"] is None else config["input_shape"], # TODO: change to output shape 'old_model_path': config['old_model'] }) if not overwrite and len(glob.glob(config["model_file"] + '*.h5')) > 0: model_path = get_last_model_path(config["model_file"]) print('Loading model from: {}'.format(model_path)) model.load_weights(model_path) model.summary() # get training and testing generators train_generator, validation_generator, n_train_steps, n_validation_steps = get_training_and_validation_generators( data_file_opened, batch_size=config["batch_size"], data_split=config["validation_split"], overwrite=overwrite, validation_keys_file=config["validation_file"], training_keys_file=config["training_file"], test_keys_file=config["test_file"], n_labels=config["n_labels"], labels=config["labels"], patch_shape=(*config["patch_shape"], config["patch_depth"]), validation_batch_size=config["validation_batch_size"], augment=config["augment"], skip_blank_train=config["skip_blank_train"], skip_blank_val=config["skip_blank_val"], truth_index=config["truth_index"], truth_size=config["truth_size"], prev_truth_index=config["prev_truth_index"], prev_truth_size=config["prev_truth_size"], truth_downsample=config["truth_downsample"], truth_crop=config["truth_crop"], patches_per_epoch=config["patches_per_epoch"], categorical=config["categorical"], is3d=config["3D"], drop_easy_patches_train=config["drop_easy_patches_train"], drop_easy_patches_val=config["drop_easy_patches_val"]) # run training train_model(model=model, model_file=config["model_file"], training_generator=train_generator, validation_generator=validation_generator, steps_per_epoch=n_train_steps, validation_steps=n_validation_steps, initial_learning_rate=config["initial_learning_rate"], learning_rate_drop=config["learning_rate_drop"], learning_rate_patience=config["patience"], early_stopping_patience=config["early_stop"], n_epochs=config["n_epochs"], output_folder=config["base_dir"]) data_file_opened.close()
def main_train(config, overwrite=False): # convert input images into an hdf5 file if overwrite or not os.path.exists(config["data_file"]): print("Writing h5 file") training_files, subject_ids = fetch_training_data_files( return_subject_ids=True) _, (mean, std) = write_data_to_file(training_files, config["data_file"], subject_ids=subject_ids, normalize=config['normalization'], add_pred=config['pred_size']) with open(os.path.join(config["base_dir"], 'norm_params.json'), mode='w') as f: json.dump({'mean': mean, 'std': std}, f) data_file_opened = open_data_file(config["data_file"]) if not overwrite and len(glob.glob(config["model_file"] + '*.h5')) > 0: model_path = get_last_model_path(config["model_file"]) print('Loading model from: {}'.format(model_path)) model = load_old_model(model_path) else: # instantiate new model loss_func = getattr(fetal_net.metrics, config['loss']) model_func = getattr(fetal_net.model, config['model_name']) model = model_func( input_shape=config["input_shape"], initial_learning_rate=config["initial_learning_rate"], **{ 'dropout_rate': config['dropout_rate'], 'loss_function': loss_func, 'depth': config['model_params']['depth'], 'n_base_filters': config['model_params']['n_base_filters'], 'old_model_path': config['old_model'], 'truth_index': config['truth_index'], 'truth_size': config['truth_size'] }) model.summary() # get training and testing generators train_generator, validation_generator, n_train_steps, n_validation_steps = get_training_and_validation_generators( data_file_opened, batch_size=config["batch_size"], data_split=config["validation_split"], overwrite=overwrite, validation_keys_file=config["validation_file"], training_keys_file=config["training_file"], test_keys_file=config["test_file"], n_labels=config["n_labels"], labels=config["labels"], patch_shape=(*config["patch_shape"], config["patch_depth"]), validation_batch_size=config["validation_batch_size"], augment=config["augment"], skip_blank_train=config["skip_blank_train"], skip_blank_val=config["skip_blank_val"], truth_index=config["truth_index"], truth_size=config["truth_size"], prev_truth_index=config["prev_truth_index"], prev_truth_size=config["prev_truth_size"], pred_index=config["pred_index"], pred_size=config["pred_size"], truth_downsample=config["truth_downsample"], truth_crop=config["truth_crop"], patches_per_epoch=config["patches_per_epoch"], categorical=config["categorical"], is3d=config["3D"], drop_easy_patches_train=config["drop_easy_patches_train"], drop_easy_patches_val=config["drop_easy_patches_val"]) # run training train_model(model=model, model_file=config["model_file"], training_generator=train_generator, validation_generator=validation_generator, steps_per_epoch=n_train_steps, validation_steps=n_validation_steps, initial_learning_rate=config["initial_learning_rate"], learning_rate_drop=config["learning_rate_drop"], learning_rate_patience=config["patience"], early_stopping_patience=config["early_stop"], n_epochs=config["n_epochs"], output_folder=config["base_dir"]) data_file_opened.close()