#period-dim j = pd.DataFrame(finalized) j['period_type'] = 'half-hourly' j.columns = ['date_time', 'period_type'] gg = list(range(48)) #repeating 48 period n times j['period'] = pd.Series(np.tile(gg, len(j))) except: print("check the date_Time range_calculation_function") try: pr1 = fetch_.date_time_operation(df) pr1['date_time'] = pr1['Date'] + " " + pr1['Time'] pr1.columns = [ 'area_id', 'device_id', 'date', 'time', 'value', 'date_time' ] Gigar = fetch_.data_loss_finder(pr1, client_id, areaId, j) Gigar['client_id'] = np.repeat(client_id, len(Gigar)) Gigar_2 = Gigar[[ 'client_id', 'area_id', 'device_id', 'date_time', 'date', 'period_type', 'period', 'value' ]] Gigar_2.columns = [ 'client_id', 'area_id', 'device_id', 'date_time', 'date', 'period_type', 'period', 'traffic_count' ] Gigar_2['created_date'] = pd.to_datetime('now').replace(microsecond=0) except: print("Error : Check the data") try: zk = z[z.areaid == "" + areaId + ""] data_ass = zk[['clientid', 'clinetname', 'areaid']]
'created_date' ]] Gigar_3 = fetch_.optimize_smoothed_error_count_paper(Gigar_2) Gigar_4 = fetch_.paper_towel_usage_calculation_optimize(Gigar_3, R) #Gigar_5=fetch_.Final_clean(Gigar_3) except: print("Error : Check the data") try: Gigar_6 = Gigar_4[[ 'client_id', 'area_id', 'device_id', 'date_time', 'date', 'raw_value', 'smoothed_value', 'usage', 'created_date' ]] Gigar_6.date_time = Gigar_6.date_time.astype(str) Gigar_6.device_id = Gigar_6.device_id.astype(str) ghkl = fetch_.data_loss_finder(Gigar_6, client_id, areaId, j) #ghkl_.reset_index(inplace=True) result = fetch_.usage_gap_distribution(ghkl, ab) result_ = result[result.device_id != 'nan'] result_.smoothed_value = np.where(result_.smoothed_value > 100, 0, result_.smoothed_value) result_['usage'] = np.where( result_['date_time'] == '2019-05-01 00:00:00', 0, result_.usage) except: print("enter dedata") try: database_username = '******' database_password = '******' database_ip = '****' database_name = '****' database_connection = sqlalchemy.create_engine(
'period_type', 'period', 'traffic_count', 'created_date' ]] Gigar_3 = fetch_.Final_clean_People_count(Gigar_2) Gigar_3['traffic_count'] = Gigar_3['traffic_count'].astype(int) Final = Gigar_3[[ 'client_id', 'area_id', 'device_id', 'date_time', 'date', 'traffic_count', 'created_date' ]] j['date_time'] = j['date_time'].astype(str) grpd_traff = pd.DataFrame( Final.groupby(['date_time'])['traffic_count'].sum()) grpd_traff.reset_index(inplace=True) uniqs = Final.device_id.unique() kj = "" grpd_traff['device_id'] = kj.join(uniqs[0]) data_loss_traffic = fetch_.data_loss_finder(grpd_traff, client_id, areaId, j) Gigar_fin = data_loss_traffic[[ 'client_id', 'area_id', 'device_id', 'date_time', 'date', 'period_type', 'period', 'traffic_count', 'created_date' ]] print(j.shape, Gigar_fin.shape) print(Gigar_fin.isnull().sum()) except: print("Error : Check the data", areaId) try: zk = z[z.areaid == "" + areaId + ""] data_ass = zk[['clientid', 'clinetname', 'areaid']] data_ass['devicetype'] = 'PeopleCount' data_ass['start_date'] = np.min(df['Date']) data_ass['end_date'] = np.max(df['Date']) data_ass['device_count'] = df.deviceName.nunique()