# zI = radius-Delta, # Delta = \int rho(r) r^2 dr / \int rho(r) r dr # Cc = fetmodel.Cc_radial(epsS, zI, W1-zI) # See eq. in # IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 1, JANUARY 2008 411 # Modeling the Centroid and the Inversion Charge in # Cylindrical Surrounding Gate MOSFETs, # Including Quantum Effects # J. B. Roldán, Andrés Godoy, Francisco Gámiz, Senior Member, IEEE, and M. Balaguer nmax=5 mmax=5 print('Cox=', Cox,', Cc=', Cc) p=fetmodel.parameters_ballistic(alpha=alpha, Ceff=Cox*Cc/(Cox+Cc), ems=ems, W1=W1, W2=W2, nmax=nmax, mmax=mmax) p.output() Epnm=np.zeros(nmax*mmax) gamma_nm=np.zeros(nmax*mmax) alpha_nm=np.zeros(nmax*mmax) ems_nm=np.zeros(nmax*mmax) Enm=np.zeros(nmax*mmax) print('Energy Levels: n, m, parabollic, nonparabollic') i=0 for n in np.arange(1, p.nmax+1): for m in np.arange(1,p.mmax+1): Epnm[i]=fetmodel.Ep_nm_radial1d(p.ems, p.W1/2, int(n), int(m))
epsS = 8.9 tOX = 20e-9 temperature = 300 ems = 0.067 # W1 = 10e-9 # W2 = 8e-9 # alpha = fetmodel.alpha_NP(Eg, ems) Cox = epsOX*8.85e-12/tOX Cc = math.sqrt(1.6e-19*1e21/(2*epsS*8.86e-12*1)) # Ceff=Cox*Cc/(Cox+Cc); Ceff=Cox # alpha_D = 0 # alpha_G = 1 print(Cox,Cc) p=fetmodel.parameters_ballistic(Ceff=Ceff, ems=ems, ) p.output() print("Test of ballistic2d: parabolic band") Vgs = np.arange(-0.1, 1, 0.01) Ids1 = np.empty_like(Vgs) Ids2 = np.empty_like(Vgs) Vds = 0.5 for i, Vgs0 in enumerate(Vgs): Ids1[i] = fetmodel.Ids_ballistic2d(Vds, Vgs0, p, 0)*1e-3 Ids2[i] = Ids_ballistic2d(Vds, Vgs0, p, 0)*1e-3 fig, ax = plt.subplots() ax.plot(Vgs, Ids1, label='Ids1')