예제 #1
0
def get_diagram_one(ax, fermion_style, boson_style, vertex_style):

    D = Diagram(ax)

    w = 0.75
    xy0 = [0.5 - w / 2, 0.25]
    v1 = D.vertex(xy0, **vertex_style)
    v2 = D.vertex(v1.xy, dx=w, **vertex_style)
    G = D.line(v1, v2, **fermion_style)
    B = D.line(v1, v2, **boson_style)

    # In case the axes get smaller (you have more diagrams), you might want to change the scale
    D.scale(1.0)

    D.plot()
    return D
예제 #2
0
def get_diagram_one(ax, fermion_style, boson_style, vertex_style):

    D = Diagram(ax)

    w = 0.75
    xy0 = [0.5 - w/2, 0.25]
    v1 = D.vertex(xy0, **vertex_style)
    v2 = D.vertex(v1.xy, dx=w, **vertex_style)
    G = D.line(v1, v2, **fermion_style)
    B = D.line(v1, v2, **boson_style)

    # In case the axes get smaller (you have more diagrams), you might want to change the scale
    D.scale(1.0)

    D.plot()
    return D
예제 #3
0
diagram = Diagram(ax)
diagram.text(.4,0.9,"Doubly Charged Higgs Production", fontsize=40)
q1in = diagram.vertex(xy=(.1,.75), marker='')
q2in= diagram.vertex(xy=(.1,.25), marker='')
v1 = diagram.vertex(xy=(.3,.75))
v2 = diagram.vertex(xy=(.3,.25))
vmerge = diagram.vertex(xy=(.6,.5))
higgsout = diagram.vertex(xy=(.8,.5))
q1pout = diagram.vertex(xy=(.95,.75), marker='')
q2pout = diagram.vertex(xy=(.95,.25), marker='')
l1out = diagram.vertex(xy=(.95,.62), marker='')
l2out = diagram.vertex(xy=(.95,.38), marker='')

lw = 5
# Quarks
q1 = diagram.line(q1in, v1, color='blue', lw=lw, arrow_param=dict(color='blue', length=0.08, width=0.02))
q2 = diagram.line(q2in, v2, color='blue', lw=lw, arrow_param=dict(color='blue', length=0.08, width=0.02))
q1p = diagram.line(v1, q1pout, color='blue', lw=lw, arrow_param=dict(color='blue', length=0.08, width=0.02))
q2p = diagram.line(v2, q2pout, color='blue', lw=lw, arrow_param=dict(color='blue', length=0.08, width=0.02))
diagram.text(.05, 0.75, "q", fontsize=40)
diagram.text(.05, 0.25, "q",fontsize=40)
diagram.text(0.98, 0.75, r"$\mathrm{q}^\prime$", fontsize=40)
diagram.text(0.98, 0.25, r"$\mathrm{q}^\prime$",fontsize=40)

# Bosons
w1 = diagram.line(v1, vmerge, style='wiggly', color='green', lw=lw)
w2 = diagram.line(v2, vmerge, style='wiggly', color='green', lw=lw)
higgs = diagram.line(vmerge, higgsout, arrow=False, ls='dashed', lw=lw, dashes=(4, 2))
diagram.text(0.35, 0.6, r"$W^+$", fontsize=40)
diagram.text(0.35, 0.38, r"$W^+$", fontsize=40)
diagram.text(0.72, 0.55, r"$H^{++}$", fontsize=40)
예제 #4
0
opwidth = 0.3
linlen = 0.4
tail_marker = "o"

W_style = dict(style="double wiggly", nwiggles=2)
v_style = dict(style="simple wiggly", nwiggles=2)

D = Diagram(ax)

arrowparam = dict(width=0.05)

xy = [0.2, y0]
v01 = D.verticle(xy, marker=tail_marker)
xy[0] += linlen
v02 = D.verticle(v01.xy, dx=linlen, marker=tail_marker)
W = D.line(v01, v02, **W_style)

text_prop = dict(y=0.06, fontsize=22)

W.text("$W$", **text_prop)

D.text(0.75, y0, "=", fontsize=30)

xy = [0.9, y0]
v21 = D.verticle(xy, marker=tail_marker)
v22 = D.verticle(v21.xy, dx=linlen, marker=tail_marker)
v = D.line(v21, v22, **v_style)
v.text("$v$", **text_prop)

D.text(1.45, y0, "+", fontsize=30)
예제 #5
0
# Define line styles
G_style = dict(
    style='double elliptic',
    ellipse_excentricity=-1.2,
    ellipse_spread=.3,
    arrow=True,
    arrow_param={'width': 0.05},
)

# Draw the diagram
v01 = d.vertex([x0, y0])
v02 = d.vertex(v01.xy, dx=opwidth)
P = d.operator([v01, v02], c=1.3)
P.text("$P$")

d.text(v02.x + textpad, y0, "=", fontsize=30)

v21 = d.vertex(v02.xy, dx=.4)
v22 = d.vertex(v21.xy, dx=linlen, dy=Gamma_side / 2)
v23 = d.vertex(v21.xy, dx=linlen, dy=-Gamma_side / 2)
v24 = d.vertex(v21.xy, dx=linlen + Gamma_height)

l21 = d.line(v22, v21, **G_style)
l21 = d.line(v21, v23, **G_style)

Gamma = d.operator([v22, v23, v24])
Gamma.text("$\Gamma$")

d.draw()
plt.show()
예제 #6
0
D = Diagram(ax)

v11 = D.vertex([.1, .08])
v12 = D.vertex(v11.xy, dx=.15)

Sigma = D.operator([v11, v12])
Sigma.text("$\Sigma$")

# Symbols
D.text(v12.x + .1, v12.y, "=")

# GW convolution
v21 = D.vertex(v12.xy, dxy=[0.2, -0.04])
v22 = D.vertex(v21.xy, dx=0.4)

l21 = D.line(v21, v22, style='double', arrow=True)

# Specifying the number of wiggles and the amplitude of the wiggles
l22 = D.line(v21,
             v22,
             style='double wiggly elliptic',
             nwiggles=5.5,
             amplitude=0.015)

# 't' is the coordinate along the line (from 0 to 1)
l21.text("G", t=0.4, y=.025, fontsize=24)
l22.text("W", y=-.06, fontsize=24)

# Plot and show
D.plot()
plt.show()
예제 #7
0
xy = [0.2, y0]
v01 = D.verticle(xy)

xy[0] += opwidth
v02 = D.verticle(xy)

Sigma = D.operator([v01, v02])
Sigma.text("$\Sigma$")

D.text(.70, y0, "=", fontsize=30)

xy[1] = y0 - 0.07

xy[0] = 0.9
v21 = D.verticle(xy)

xy[0] += linlen
v22 = D.verticle(xy)

l21 = D.line(v21, v22, **G_style)
l22 = D.line(v21, v22, **W_style)

l21.text("G", y=.05)
l22.text("W", y=-.1)

D.plot()

fig.savefig('pdf/gw-Sigma.pdf')
fig.savefig('pdf/gw-Sigma.png')
예제 #8
0
import matplotlib.pyplot as plt
from feynman import Diagram

fig = plt.figure(figsize=(10., 10.))
ax = fig.add_axes([0, 0, 1, 1], frameon=False)

diagram = Diagram(ax)
diagram.text(.4, 0.9, "Associated Vector Boson", fontsize=40)
diagram.text(.6, 0.83, "(VH or 'Higgs Strahlung')", fontsize=40)
in1 = diagram.vertex(xy=(.1, .75), marker='')
in2 = diagram.vertex(xy=(.1, .25), marker='')
v1 = diagram.vertex(xy=(.35, .5))
v2 = diagram.vertex(xy=(.65, .5))
higgsout = diagram.vertex(xy=(.9, .75))
out1 = diagram.vertex(xy=(.9, .25), marker='')

q1 = diagram.line(in1, v1)
q2 = diagram.line(v1, in2)
wz1 = diagram.line(v1, v2, style='wiggly')
wz2 = diagram.line(v2, out1, style='wiggly')
higgs = diagram.line(v2, higgsout, arrow=False, style='dashed')

q1.text("q", fontsize=30)
q2.text(r"$\bar{\mathrm{q}}$", fontsize=30)
diagram.text(0.5, 0.55, "$Z/W^\pm$", fontsize=30)
diagram.text(0.69, 0.35, "$Z/W^\pm$", fontsize=30)
higgs.text("H", fontsize=30)

diagram.plot()
plt.show()
예제 #9
0
파일: ttH.py 프로젝트: bruneval/feynman
fig = matplotlib.pyplot.figure(figsize=(1., 1.))
ax = fig.add_axes([0, 0, 10, 10], frameon=False)

diagram = Diagram(ax)
diagram.text(.5, 0.9, "Associated Top Pair (ttH)", fontsize=40)
in1 = diagram.verticle(xy=(.1, .8), marker='')
in2 = diagram.verticle(xy=(.1, .2), marker='')
v1 = diagram.verticle(xy=(.4, .7))
v2 = diagram.verticle(xy=(.4, .3))
v3 = diagram.verticle(xy=(.6, .5))
out1 = diagram.verticle(xy=(.9, .8), marker='')
out2 = diagram.verticle(xy=(.9, .2), marker='')
higgsout = diagram.verticle(xy=(.9, .5))

g1 = diagram.line(in1, v1, style='loopy', nloops=7, yamp=0.04)
g2 = diagram.line(in2, v2, style='loopy', nloops=7, yamp=0.04)
t1 = diagram.line(v3, v1, arrow=True)
t2 = diagram.line(v2, v3, arrow=True)
higgs = diagram.line(v3, higgsout, arrow=False, style='dashed')
t3 = diagram.line(v1, out1, arrow=True)
t4 = diagram.line(out2, v2, arrow=True)

g1.text("g", fontsize=30)
g2.text("g", fontsize=30)
diagram.text(v3.xy[0], v3.xy[1] + 0.1, r"$\bar{\mathrm{t}}$", fontsize=35)
t2.text("t", fontsize=30)
t3.text("t", fontsize=30)
t4.text(r"$\bar{\mathrm{t}}$", fontsize=30)
higgs.text("H", fontsize=35)
예제 #10
0
from feynman import Diagram

fig = plt.figure(figsize=(10.,10.))
ax = fig.add_axes([0,0,1,1], frameon=False)

diagram = Diagram(ax)
in1 = diagram.vertex(xy=(.1,.6), marker='')
in2= diagram.vertex(xy=(.1,.4), marker='')
v1 = diagram.vertex(xy=(.4,.6))
v2 = diagram.vertex(xy=(.4,.4))
v3 = diagram.vertex(xy=(.6,.5))
v4 = diagram.vertex(xy=(.34,.5), marker='')
higgsout = diagram.vertex(xy=(.9,.5))
epsilon = diagram.operator([v4,v3], c=1.1)
epsilon.text("Effective \n coupling", fontsize=30)

gluon_up_style = dict(style='linear loopy', xamp=.025, yamp=.035, nloops=7)
gluon_down_style = dict(style='linear loopy', xamp=.025, yamp=-.035, nloops=7)

g1 = diagram.line(in1, v1, **gluon_up_style)
g2 = diagram.line(in2, v2, **gluon_down_style)

higgs = diagram.line(v3, higgsout, arrow=False, style='dashed')

g1.text("g",fontsize=30)
diagram.text(v4.xy[0]-.08, v4.xy[1]-.05, "g",fontsize=35)
higgs.text("H",fontsize=30)

diagram.plot()
plt.show()
예제 #11
0
ax.set_ylim(0, .3)

y0 = sum(ax.get_ylim()) / 2
l = 0.4

x0 = .05

G_style = dict(arrow=True, arrow_param={'width': 0.05}, style='double')
G0_style = dict(arrow=True, arrow_param={'width': 0.05}, style='simple')

D = Diagram(ax)

x = x0
v01 = D.verticle(xy=(x, y0))
v02 = D.verticle(v01.xy, dx=l)
G = D.line(v01, v02, **G_style)

text_prop = dict(y=0.05, fontsize=20)
G.text("$G$", **text_prop)

x = x0 + .55
D.text(x, y0, "=", fontsize=30)

x = x0 + .7
v21 = D.verticle(xy=(x, y0))
v22 = D.verticle(v21.xy, dx=l)
G0 = D.line(v21, v22, **G0_style)
G0.text("$G_0$", **text_prop)

x = x0 + 1.25
D.text(x, y0, "+", fontsize=30)
예제 #12
0
# Line styles
Ph_style = dict(style='elliptic loopy', ellipse_spread=.6, xamp=.10, yamp=-.15, nloops=15)
DW_style = dict(style='circular loopy', circle_radius=.7, xamp=.10, yamp=.15, nloops=18)
G_style = dict(style='simple', arrow=True, arrow_param={'width':0.15, 'length': .3})

# Item 1
v11 = D.vertex([D.x0, D.y0])
v12 = D.vertex(v11.xy, dx=opwidth)
Sigma = D.operator([v11, v12])
Sigma.text("$\Sigma^{ep}$")

# Symbol
D.text(v12.x + txtpad, D.y0, "=")

# Item 3
v21 = D.vertex([v12.x + 2 * txtpad,  D.y0 - 0.3])
v22 = D.vertex(v21.xy, dx=linlen)
G = D.line(v21, v22, **G_style)
Ph = D.line(v21, v22, **Ph_style)

# Symbol
D.text(v22.x + txtpad, D.y0, "+")

# Item 3
v31 = D.vertex([v22.x + 3 * txtpad,  D.y0 - 0.3])
DW = D.line(v31, v31, **DW_style)

D.plot()
plt.show()
예제 #13
0
opwidth = 0.3
linlen = 0.4

W_style = dict(style='double wiggly', nwiggles=2)
v_style = dict(style='simple wiggly', nwiggles=2)

# First diagram
D1 = Diagram(ax)

xy = [0.2, y0]
v01 = D1.verticle(xy)

xy[0] += linlen
v02 = D1.verticle(v01.xy, dx=linlen)

W = D1.line(v01, v02, **W_style)

text_prop = dict(y=0.06, fontsize=22)

W.text("$W$", **text_prop)

D1.text(.75, y0, "=", fontsize=30)

xy = [0.9, y0]
v11 = D1.verticle(xy)
v13 = D1.verticle(v11.xy, dx=opwidth)
v14 = D1.verticle(v13.xy, dx=linlen)

O = D1.operator([v11,v13], c=1.1)
O.text("${\\varepsilon^{-1}}$", x=.0, y=.01, fontsize=35)
D1.line(v13, v14, **v_style)
예제 #14
0
"""
import matplotlib.pyplot as plt
from feynman import Diagram

fig = plt.figure(figsize=(10.,10.))
ax = fig.add_axes([0,0,1,1], frameon=False)

diagram = Diagram(ax)
in1 = diagram.vertex(xy=(.1,.5))
in2= diagram.vertex(xy=(.4,.5))
v1 = diagram.vertex(xy=(.65,.65))
v2 = diagram.vertex(xy=(.65,.35))
out1 = diagram.vertex(xy=(.9,.65),marker='')
out2 = diagram.vertex(xy=(.9,.35),marker='')

higgs = diagram.line(in1, in2, arrow=False, style='dashed')
nu1 = diagram.line(v1, in2)
nu2 = diagram.line(in2, v2)
w = diagram.line(v1, v2, style='wiggly')
lep = diagram.line(out1, v1)
tau = diagram.line(v2, out2)

nu1.text(r"$\nu_\ell$",fontsize=40)
nu2.text(r"$\nu_\tau$",fontsize=40)
lep.text(r"$\ell^+$",fontsize=40)
tau.text(r"$\tau^-$",fontsize=40)
diagram.text(0.72,0.5,"$W^\pm$",fontsize=40)
higgs.text("H",fontsize=40)

diagram.plot()
plt.show()
예제 #15
0
ax.set_ylim(0, .15)

l = 0.15  # Length of the propagator
txt_l = 0.05  # Padding around the symbol
op_l = 0.08  # Size of the operator

G_style = dict(arrow=True, arrow_param={'width':0.02, 'length': 0.05}, style = 'double')
G0_style = dict(arrow=True, arrow_param={'width':0.02, 'length': 0.05}, style = 'simple')
text_prop = dict(y=0.02, fontsize=20)

D = Diagram(ax)

# Left hand side
v11 = D.vertex(xy=[0.05, 0.06])
v12 = D.vertex(v11.xy, dx=l)
G = D.line(v11, v12, **G_style)
G.text("$G$", **text_prop)

# Symbol
D.text(v12.x + txt_l, v12.y, "=")

# First term
v21 = D.vertex(v12.xy, dx=2*txt_l)
v22 = D.vertex(v21.xy, dx=l)
G0 = D.line(v21, v22, **G0_style)
G0.text("$G_0$", **text_prop)

# Symbol
D.text(v22.x + txt_l, v22.y, "+")

# Second term
예제 #16
0
파일: VBF-LO.py 프로젝트: bruneval/feynman
from feynman import Diagram

fig = matplotlib.pyplot.figure(figsize=(1., 1.))
ax = fig.add_axes([0, 0, 10, 10], frameon=False)
diagram = Diagram(ax)
in1 = diagram.verticle(xy=(.1, .8), marker='')
in2 = diagram.verticle(xy=(.1, .2), marker='')
v1 = diagram.verticle(xy=(.5, .7))
v2 = diagram.verticle(xy=(.5, .3))
v3 = diagram.verticle(xy=(.5, .5))
out1 = diagram.verticle(xy=(.9, .8), marker='')
out2 = diagram.verticle(xy=(.9, .2), marker='')
higgsout = diagram.verticle(xy=(.9, .5))

q1 = diagram.line(in1, v1, arrow=False)
q2 = diagram.line(in2, v2, arrow=False)
wz1 = diagram.line(v1, v3, style='wiggly')
wz2 = diagram.line(v2, v3, style='wiggly')
higgs = diagram.line(v3, higgsout, style='dashed', arrow=False)
q3 = diagram.line(v1, out1, arrow=False)
q4 = diagram.line(v2, out2, arrow=False)

q1.text(r"$\bar{q}$", fontsize=30)
q2.text("$Q$", fontsize=30)
diagram.text(v3.xy[0] + 0.12, v3.xy[1] + 0.11, "$Z/W^\pm$", fontsize=30)
wz2.text("$Z/W^\pm$", fontsize=30)
q3.text(r"$\bar{q}$", fontsize=30)
q4.text("$Q$", fontsize=30)
higgsout.text("$H$", fontsize=30)
예제 #17
0
ax.set_ylim(0, .3)

y0 = sum(ax.get_ylim()) / 2
l = 0.4

x0 = .05

G_style = dict(arrow=True, arrow_param={'width':0.05}, style = 'double')
G0_style = dict(arrow=True, arrow_param={'width':0.05}, style = 'simple')

D = Diagram(ax)

x = x0
v01 = D.verticle(xy=(x,y0))
v02 = D.verticle(v01.xy, dx=l)
G = D.line(v01, v02, **G_style)

text_prop = dict(y=0.05, fontsize=20)
G.text("$G$", **text_prop)

x = x0 + .55
D.text(x, y0, "=", fontsize=30)

x = x0 + .7
v21 = D.verticle(xy=(x,y0))
v22 = D.verticle(v21.xy, dx=l)
G0 = D.line(v21, v22, **G0_style)
G0.text("$G_0$", **text_prop)

x = x0 + 1.25
D.text(x, y0, "+", fontsize=30)
예제 #18
0
diagram.text(.4, 0.9, "Doubly Charged Higgs Production", fontsize=40)
in1 = diagram.vertex(xy=(.1, .75), marker='')
in2 = diagram.vertex(xy=(.1, .25), marker='')
v1 = diagram.vertex(xy=(.35, .5))
v2 = diagram.vertex(xy=(.65, .5))
higgsplusout = diagram.vertex(xy=(.8, .7))
higgsminusout = diagram.vertex(xy=(.8, .3))
l1plus = diagram.vertex(xy=(.95, .8), marker='')
l2plus = diagram.vertex(xy=(.95, .6), marker='')
l1minus = diagram.vertex(xy=(.95, .4), marker='')
l2minus = diagram.vertex(xy=(.95, .2), marker='')

lw = 5
q1 = diagram.line(v1,
                  in1,
                  color='blue',
                  lw=lw,
                  arrow_param=dict(color='blue', length=0.08, width=0.02))
q2 = diagram.line(in2,
                  v1,
                  color='blue',
                  lw=lw,
                  arrow_param=dict(color='blue', length=0.08, width=0.02))
l1 = diagram.line(l1plus,
                  higgsplusout,
                  color='blue',
                  lw=lw,
                  arrow_param=dict(color='blue', length=0.08, width=0.02))
l2 = diagram.line(l2plus,
                  higgsplusout,
                  color='blue',
예제 #19
0
D.text(.75, y0, "=", fontsize=30)

v30 = D.verticle([1.05, y0])


n1 = np.array([-np.sqrt(3)/6, .5])
n2 = np.array([-np.sqrt(3)/6,-.5])
n3 = np.array([ np.sqrt(3)/3, .0])

chunkdist = .05
v310 = D.verticle(v30.xy, dxy=n1*chunkdist, marker='')
v320 = D.verticle(v30.xy, dxy=n2*chunkdist, marker='')
v330 = D.verticle(v30.xy, dxy=n3*chunkdist, marker='')

chunklen = .05
v31 = D.verticle(v310.xy, dxy=n1*chunklen, marker='')
v32 = D.verticle(v320.xy, dxy=n2*chunklen, marker='')
v33 = D.verticle(v330.xy, dxy=n3*chunklen, marker='')

chunkstyle=dict(arrow=False, linewidth=6.)
D.line(v310, v31, **chunkstyle)
D.line(v320, v32, **chunkstyle)
D.line(v330, v33, **chunkstyle)


D.plot()

fig.savefig('pdf/gw-Gamma.pdf')

예제 #20
0
from feynman import Diagram

fig = matplotlib.pyplot.figure(figsize=(1., 1.))
ax = fig.add_axes([0, 0, 10, 10], frameon=False)
diagram = Diagram(ax)
#diagram.text(.5,0.9,"Gluon-Gluon Fusion (ggF)",fontsize=40)
in1 = diagram.verticle(xy=(.1, .7), marker='')
in2 = diagram.verticle(xy=(.1, .3), marker='')
v1 = diagram.verticle(xy=(.4, .7))
v2 = diagram.verticle(xy=(.4, .3))
v3 = diagram.verticle(xy=(.6, .5))
higgsout = diagram.verticle(xy=(.9, .5))

gluon_style = dict(style='linear loopy', xamp=.025, yamp=.035, nloops=7)

g1 = diagram.line(in1, v1, **gluon_style)
g2 = diagram.line(in2, v2, **gluon_style)
t1 = diagram.line(v1, v2)
t2 = diagram.line(v2, v3)
t3 = diagram.line(v3, v1)
higgs = diagram.line(v3, higgsout, arrow=False, style='dashed')

g1.text("g", fontsize=30)
g2.text("g", fontsize=30)
t1.text("t", fontsize=30)
t2.text("t", fontsize=30)
t3.text(r"$\bar{\mathrm{t}}$", fontsize=35)
higgs.text("H", fontsize=30)

diagram.plot()
fig.savefig('pdf/ggF-SM.pdf', bbox_inches='tight')
예제 #21
0
v30 = D.verticle(v02.xy, dx=2 * obj_spacing)

n1 = np.array([-1., 0.])
n2 = np.array([1., 0.])

chunkdist = .03
v310 = D.verticle(v30.xy, dxy=n1 * chunkdist, marker='')
v320 = D.verticle(v30.xy, dxy=n2 * chunkdist, marker='')

chunklen = .025
v31 = D.verticle(v310.xy, dxy=n1 * chunklen, marker='')
v32 = D.verticle(v320.xy, dxy=n2 * chunklen, marker='')

chunkstyle = dict(arrow=False, linewidth=6.)
D.line(v310, v31, **chunkstyle)
D.line(v320, v32, **chunkstyle)

D.text(v30.xy[0] + obj_spacing, y0, "-", fontsize=40)

xy = [1.6, y0]
v11 = D.verticle(v30.xy, dx=2 * obj_spacing)
v12 = D.verticle(v11.xy, dx=linlen)
v13 = D.verticle(v12.xy, dx=opwidth)

D.line(v11, v12, **v_style)
O = D.operator([v12, v13], c=1.3)

O.text("$P$")

D.plot()
예제 #22
0
opwidth = 0.3
linlen = 0.4
tail_marker = 'o'

W_style = dict(style='double wiggly', nwiggles=2)
v_style = dict(style='simple wiggly', nwiggles=2)

D = Diagram(ax)

arrowparam = dict(width=0.05)

xy = [0.2, y0]
v01 = D.verticle(xy, marker=tail_marker)
xy[0] += linlen
v02 = D.verticle(v01.xy, dx=linlen, marker=tail_marker)
W = D.line(v01, v02, **W_style)

text_prop = dict(y=0.06, fontsize=22)

W.text("$W$", **text_prop)

D.text(.75, y0, "=", fontsize=30)

xy = [0.9, y0]
v21 = D.verticle(xy, marker=tail_marker)
v22 = D.verticle(v21.xy, dx=linlen, marker=tail_marker)
v = D.line(v21, v22, **v_style)
v.text("$v$", **text_prop)

D.text(1.45, y0, "+", fontsize=30)
예제 #23
0
"""

import matplotlib.pyplot as plt
from feynman import Diagram

# If no Axes is given, a new one is initialized.
diagram = Diagram()

# Create four vertices.
v1 = diagram.vertex(xy=(.1, .5), marker='')
v2 = diagram.vertex(v1.xy, dx=.2)
v3 = diagram.vertex(v2.xy, dx=.4)
v4 = diagram.vertex(v3.xy, dx=.2, marker='')

# Create four lines.
# By default, 'simple' lines have arrows
# and others flavours such as 'wiggly' or 'loopy' don't.
l12 = diagram.line(v1, v2)
l23 = diagram.line(v2, v3)
l34 = diagram.line(v3, v4, arrow=True)
w23 = diagram.line(v2, v3, style='wiggly elliptic')

# Add labels.
l12.text("p")
w23.text("q")
l23.text("p - q")
l34.text("p")

diagram.plot()
plt.show()
예제 #24
0
# Line styles
Ph_style = dict(style='elliptic loopy', ellipse_spread=.6, xamp=.10, yamp=-.15, nloops=15)
DW_style = dict(style='circular loopy', circle_radius=.7, xamp=.10, yamp=.15, nloops=18)
G_style = dict(style='simple', arrow=True, arrow_param={'width':0.15, 'length': .3})

# Item 1
v1 = D.verticle([D.x0, D.y0])
v2 = D.verticle(v1.xy, dx=opwidth)
Sigma = D.operator([v1,v2])
Sigma.text("$\Sigma^{ep}$")

# Item 2
D.text(v2.x + objspace, D.y0, "=", fontsize=30)

# Item 3
v1 = D.verticle([v2.x + 2 * objspace,  D.y0 - 0.3])
v2 = D.verticle(v1.xy, dx=linlen)
G = D.line(v1, v2, **G_style)
Ph = D.line(v1, v2, **Ph_style)

# Item 2
D.text(v2.x + objspace, D.y0, "+", fontsize=30)

# Item 3
v1 = D.verticle([v2.x + 3 * objspace,  D.y0 - 0.3])
DW = D.line(v1, v1, **DW_style)

D.plot()

fig.savefig('pdf/phonons-Sigma.pdf')
예제 #25
0
"""Create the Fock interaction diagram."""

import matplotlib.pyplot as plt
from feynman import Diagram

diagram = Diagram()


v1 = diagram.verticle(xy=(.1,.5), marker='')
v2 = diagram.verticle(xy=(.3,.5))
v3 = diagram.verticle(xy=(.7,.5))
v4 = diagram.verticle(xy=(.9,.5), marker='')

l12 = diagram.line(v1, v2, arrow=True)
w23 = diagram.line(v2, v3, style='elliptic wiggly')
l23 = diagram.line(v2, v3, arrow=True)
l34 = diagram.line(v3, v4, arrow=True)

l12.text("p")
w23.text("q")
l23.text("p-q")
l34.text("p")

diagram.plot()
plt.savefig('pdf/fock.pdf')
diagram.show()

예제 #26
0
# Symbol
D.text(v13.x + txtpad, y0, "=")

# Create a three-vertex dot.
chunkdist = .03
chunklen = .03
chunkstyle = dict(arrow=False, linewidth=6.)
v20 = D.vertex([v13.x + 2 * txtpad, y0])
v210 = D.vertex(v20.xy, angle=0., radius=chunkdist, marker='')
v220 = D.vertex(v20.xy, angle=1. / 3, radius=chunkdist, marker='')
v230 = D.vertex(v20.xy, angle=2. / 3, radius=chunkdist, marker='')
v21 = D.vertex(v20.xy, angle=0., radius=chunkdist + chunklen, marker='')
v22 = D.vertex(v20.xy, angle=1. / 3, radius=chunkdist + chunklen, marker='')
v23 = D.vertex(v20.xy, angle=2. / 3, radius=chunkdist + chunklen, marker='')
D.line(v210, v21, **chunkstyle)
D.line(v220, v22, **chunkstyle)
D.line(v230, v23, **chunkstyle)

# Symbol
D.text(v20.x + txtpad, y0, "+")

# Second term
xy = [v20.x + 2 * txtpad, y0]
v31 = D.vertex(xy, dy=side / 2)
v32 = D.vertex(xy, dy=-side / 2)
v33 = D.vertex(xy, dy=side / 2, dx=side)
v34 = D.vertex(xy, dy=-side / 2, dx=side)
K = D.operator([v31, v32, v34, v33])
K.text("$\\frac{\delta \Sigma}{\delta G}$")
예제 #27
0
# Symbol
D.text(v13.x + txtpad, y0, "=")

# Create a three-vertex dot.
chunkdist = .03
chunklen = .03
chunkstyle=dict(arrow=False, linewidth=6.)
v20 = D.vertex([v13.x + 2 * txtpad, y0])
v210 = D.vertex(v20.xy, angle=0.,   radius=chunkdist, marker='')
v220 = D.vertex(v20.xy, angle=1./3, radius=chunkdist, marker='')
v230 = D.vertex(v20.xy, angle=2./3, radius=chunkdist, marker='')
v21  = D.vertex(v20.xy, angle=0.,   radius=chunkdist+chunklen, marker='')
v22  = D.vertex(v20.xy, angle=1./3, radius=chunkdist+chunklen, marker='')
v23  = D.vertex(v20.xy, angle=2./3, radius=chunkdist+chunklen, marker='')
D.line(v210, v21, **chunkstyle)
D.line(v220, v22, **chunkstyle)
D.line(v230, v23, **chunkstyle)

# Symbol
D.text(v20.x + txtpad, y0, "+")

# Second term
xy = [v20.x + 2 * txtpad, y0]
v31 = D.vertex(xy, dy= side/2)
v32 = D.vertex(xy, dy=-side/2)
v33 = D.vertex(xy, dy= side/2, dx=side)
v34 = D.vertex(xy, dy=-side/2, dx=side)
K = D.operator([v31,v32,v34,v33])
K.text("$\\frac{\delta \Sigma}{\delta G}$")
예제 #28
0
ax.set_ylim(0,.25)

# Sigma operator
D = Diagram(ax)

v11 = D.vertex([.1, .08])
v12 = D.vertex(v11.xy, dx=.15)

Sigma = D.operator([v11, v12])
Sigma.text("$\Sigma$")

# Symbols
D.text(v12.x+.1, v12.y, "=")

# GW convolution
v21 = D.vertex(v12.xy, dxy=[0.2, -0.04])
v22 = D.vertex(v21.xy, dx=0.4)

l21 = D.line(v21, v22, style='double', arrow=True)

# Specifying the number of wiggles and the amplitude of the wiggles
l22 = D.line(v21, v22, style='double wiggly elliptic', nwiggles=5.5, amplitude=0.015)

# 't' is the coordinate along the line (from 0 to 1)
l21.text("G", t=0.4, y=.025, fontsize=24)
l22.text("W", y=-.06, fontsize=24)

# Plot and show
D.plot()
plt.show()
예제 #29
0
파일: fock.py 프로젝트: jornada/feynman
"""Create the Fock interaction diagram."""

from feynman import Diagram

diagram = Diagram()

v1 = diagram.verticle(xy=(.1, .5), marker='')
v2 = diagram.verticle(xy=(.3, .5))
v3 = diagram.verticle(xy=(.7, .5))
v4 = diagram.verticle(xy=(.9, .5), marker='')

l12 = diagram.line(v1, v2, arrow=True)
w23 = diagram.line(v2, v3, pathtype='elliptic', linestyle='wiggly')
l23 = diagram.line(v2, v3, arrow=True)
l34 = diagram.line(v3, v4, arrow=True)

l12.text("p")
w23.text("q")
l23.text("p-q")
l34.text("p")

diagram.plot()
diagram.show()
예제 #30
0
파일: fock.py 프로젝트: jornada/feynman
"""Create the Fock interaction diagram."""

from feynman import Diagram

diagram = Diagram()

v1 = diagram.verticle(xy=(.1,.5), marker='')
v2 = diagram.verticle(xy=(.3,.5))
v3 = diagram.verticle(xy=(.7,.5))
v4 = diagram.verticle(xy=(.9,.5), marker='')

l12 = diagram.line(v1, v2, arrow=True)
w23 = diagram.line(v2, v3, pathtype='elliptic', linestyle='wiggly')
l23 = diagram.line(v2, v3, arrow=True)
l34 = diagram.line(v3, v4, arrow=True)

l12.text("p")
w23.text("q")
l23.text("p-q")
l34.text("p")

diagram.plot()
diagram.show()
예제 #31
0
ax = fig.add_axes([0,0,1,1], frameon=False)

diagram = Diagram(ax)
#diagram.text(.5,0.9,"Gluon-Gluon Fusion (ggF)",fontsize=40)
in1 = diagram.vertex(xy=(.05,.7), marker='')
in2= diagram.vertex(xy=(.05,.3), marker='')
v1 = diagram.vertex(xy=(.25,.7))
v2 = diagram.vertex(xy=(.25,.3))
v3 = diagram.vertex(xy=(.45,.5))
higgsout = diagram.vertex(xy=(.60,.5))
zout1 = diagram.vertex(xy=(.85,.7), marker='')
zout2 = diagram.vertex(xy=(.85,.3), marker='')

gluon_style = dict(style='linear loopy', xamp=.025, yamp=.035, nloops=4)

g1 = diagram.line(in1, v1, **gluon_style)
g2 = diagram.line(in2, v2, **gluon_style)
t1 = diagram.line(v1, v2)
t2 = diagram.line(v2, v3)
t3 = diagram.line(v3, v1)
higgs = diagram.line(v3, higgsout, arrow=False, style='dashed')
z1 = diagram.line(higgsout, zout1,arrow=False, style='wiggly')
z2 = diagram.line(zout2, higgsout,arrow=False, style='wiggly')

g1.text("$g$",fontsize=30)
g2.text("$g$",fontsize=30)
diagram.text(zout1.xy[0]+.025,zout1.xy[1],"$Z$",fontsize=30)
diagram.text(zout2.xy[0]+.025,zout2.xy[1],"$Z$",fontsize=30)
t1.text("$t$",fontsize=30)
t2.text("$t$",fontsize=30)
t3.text(r"$\bar{t}$",fontsize=30)
예제 #32
0
v03 = D.verticle(xy, dx=gammalen)
gamma0 = D.operator([v01, v02, v03])
gamma0.text("$\Gamma$")

D.text(.75, y0, "=", fontsize=30)

v30 = D.verticle([1.05, y0])

n1 = np.array([-np.sqrt(3) / 6, .5])
n2 = np.array([-np.sqrt(3) / 6, -.5])
n3 = np.array([np.sqrt(3) / 3, .0])

chunkdist = .05
v310 = D.verticle(v30.xy, dxy=n1 * chunkdist, marker='')
v320 = D.verticle(v30.xy, dxy=n2 * chunkdist, marker='')
v330 = D.verticle(v30.xy, dxy=n3 * chunkdist, marker='')

chunklen = .05
v31 = D.verticle(v310.xy, dxy=n1 * chunklen, marker='')
v32 = D.verticle(v320.xy, dxy=n2 * chunklen, marker='')
v33 = D.verticle(v330.xy, dxy=n3 * chunklen, marker='')

chunkstyle = dict(arrow=False, linewidth=6.)
D.line(v310, v31, **chunkstyle)
D.line(v320, v32, **chunkstyle)
D.line(v330, v33, **chunkstyle)

D.plot()

fig.savefig('pdf/gw-Gamma.pdf')
예제 #33
0
fig = plt.figure(figsize=(10.,10.))
ax = fig.add_axes([0,0,1,1], frameon=False)

diagram = Diagram(ax)
diagram.text(.5,0.9,"Associated Top Pair (ttH)", fontsize=40)
in1 = diagram.vertex(xy=(.1,.8), marker='')
in2= diagram.vertex(xy=(.1,.2), marker='')
v1 = diagram.vertex(xy=(.4,.7))
v2 = diagram.vertex(xy=(.4,.3))
v3 = diagram.vertex(xy=(.6,.5))
out1 = diagram.vertex(xy=(.9,.8), marker='')
out2 = diagram.vertex(xy=(.9,.2), marker='')
higgsout = diagram.vertex(xy=(.9,.5))

g1 = diagram.line(in1, v1, style='loopy',nloops=7,yamp=0.04)
g2 = diagram.line(in2, v2, style='loopy',nloops=7,yamp=0.04)
t1 = diagram.line(v3, v1, arrow = True)
t2 = diagram.line(v2, v3, arrow = True)
higgs = diagram.line(v3, higgsout, arrow=False, style='dashed')
t3 = diagram.line(v1, out1, arrow=True)
t4 = diagram.line(out2, v2, arrow=True)

g1.text("g",fontsize=30)
g2.text("g",fontsize=30)
diagram.text(v3.xy[0], v3.xy[1]+0.1, r"$\bar{\mathrm{t}}$",fontsize=35)
t2.text("t",fontsize=30)
t3.text("t",fontsize=30)
t4.text(r"$\bar{\mathrm{t}}$",fontsize=30)
higgs.text("H",fontsize=35)
예제 #34
0
               arrow=True,
               arrow_param={
                   'width': 0.15,
                   'length': .3
               })

# Item 1
v11 = D.vertex([D.x0, D.y0])
v12 = D.vertex(v11.xy, dx=opwidth)
Sigma = D.operator([v11, v12])
Sigma.text("$\Sigma^{ep}$")

# Symbol
D.text(v12.x + txtpad, D.y0, "=")

# Item 3
v21 = D.vertex([v12.x + 2 * txtpad, D.y0 - 0.3])
v22 = D.vertex(v21.xy, dx=linlen)
G = D.line(v21, v22, **G_style)
Ph = D.line(v21, v22, **Ph_style)

# Symbol
D.text(v22.x + txtpad, D.y0, "+")

# Item 3
v31 = D.vertex([v22.x + 3 * txtpad, D.y0 - 0.3])
DW = D.line(v31, v31, **DW_style)

D.plot()
plt.show()
예제 #35
0
v30 = D.verticle(v02.xy, dx=2*obj_spacing)

n1 = np.array([-1.,0.])
n2 = np.array([ 1.,0.])

chunkdist = .03
v310 = D.verticle(v30.xy, dxy=n1*chunkdist, marker='')
v320 = D.verticle(v30.xy, dxy=n2*chunkdist, marker='')

chunklen = .025
v31 = D.verticle(v310.xy, dxy=n1*chunklen, marker='')
v32 = D.verticle(v320.xy, dxy=n2*chunklen, marker='')

chunkstyle=dict(arrow=False, linewidth=6.)
D.line(v310, v31, **chunkstyle)
D.line(v320, v32, **chunkstyle)


D.text(v30.xy[0] + obj_spacing, y0, "-", fontsize=40)


xy = [1.6, y0]
v11 = D.verticle(v30.xy, dx=2 * obj_spacing)
v12 = D.verticle(v11.xy, dx=linlen)
v13 = D.verticle(v12.xy, dx=opwidth)

D.line(v11, v12, **v_style)
O = D.operator([v12,v13], c=1.3)

O.text("$P$")
예제 #36
0
"""Create the Fock interaction diagram."""

import matplotlib.pyplot as plt
from feynman import Diagram

diagram = Diagram()

v1 = diagram.verticle(xy=(.1, .5), marker='')
v2 = diagram.verticle(xy=(.3, .5))
v3 = diagram.verticle(xy=(.7, .5))
v4 = diagram.verticle(xy=(.9, .5), marker='')

l12 = diagram.line(v1, v2, arrow=True)
w23 = diagram.line(v2, v3, style='elliptic wiggly')
l23 = diagram.line(v2, v3, arrow=True)
l34 = diagram.line(v3, v4, arrow=True)

l12.text("p")
w23.text("q")
l23.text("p-q")
l34.text("p")

diagram.plot()
plt.savefig('pdf/fock.pdf')
diagram.show()
"""
import matplotlib.pyplot as plt
from feynman import Diagram

fig = plt.figure(figsize=(10, 5))

ax1 = fig.add_subplot(121, frameon=False)
diagram = Diagram(ax1)
diagram.text(.5, 0.9, "Charged-Current", fontsize=25)
in1 = diagram.vertex(xy=(0.05, 0.75), marker='')
in2 = diagram.vertex(xy=(0.05, 0.25), marker='')
v1 = diagram.vertex(xy=(.45, .6))
v2 = diagram.vertex(xy=(.45, .4))
out1 = diagram.vertex(xy=(0.85, 0.75), marker='')
out2 = diagram.vertex(xy=(0.85, 0.25), marker='')
nu1 = diagram.line(in1, v1)  #incoming neutrino
N = diagram.line(in2, v2)  #incoming neucleon
W = diagram.line(v1, v2, style='wiggly')  #W mediator
nu2 = diagram.line(v1, out1)  #outgoing neutrino
X = diagram.line(v2, out2)  #outgoing shower
diagram.text(0.10, 0.68, "$\\nu_{\ell}$", fontsize=30)
diagram.text(0.10, 0.32, "$N$", fontsize=30)
diagram.text(0.57, 0.5, "$W^{\pm}$", fontsize=30)
diagram.text(0.81, 0.68, "$\ell$", fontsize=30)
diagram.text(0.81, 0.32, "$X$", fontsize=30)

ax2 = fig.add_subplot(122, frameon=False)
diagram2 = Diagram(ax2)
diagram2.text(.5, 0.9, "Neutral-Current", fontsize=25)
in1 = diagram2.vertex(xy=(0.05, 0.75), marker='')
in2 = diagram2.vertex(xy=(0.05, 0.25), marker='')
예제 #38
0
n1 = np.array([-np.sqrt(3)/6, .5])
n2 = np.array([-np.sqrt(3)/6,-.5])
n3 = np.array([ np.sqrt(3)/3, .0])

chunkdist = .05
v310 = D.verticle(v30.xy, dxy=n1*chunkdist, marker='')
v320 = D.verticle(v30.xy, dxy=n2*chunkdist, marker='')
v330 = D.verticle(v30.xy, dxy=n3*chunkdist, marker='')

chunklen = .05
v31 = D.verticle(v310.xy, dxy=n1*chunklen, marker='')
v32 = D.verticle(v320.xy, dxy=n2*chunklen, marker='')
v33 = D.verticle(v330.xy, dxy=n3*chunklen, marker='')

chunkstyle=dict(arrow=False, linewidth=6.)
D.line(v310, v31, **chunkstyle)
D.line(v320, v32, **chunkstyle)
D.line(v330, v33, **chunkstyle)


D.text(1.4, y0, "+", fontsize=30)

xy = [1.6, y0]
v11 = D.verticle(xy, dy= side/2)
v12 = D.verticle(xy, dy=-side/2)
v13 = D.verticle(xy, dy= side/2, dx=side)
v14 = D.verticle(xy, dy=-side/2, dx=side)
K = D.operator([v11,v12,v14,v13])
K.text("$\\frac{\delta \Sigma}{\delta G}$")

v21 = D.verticle(v13.xy, dx=linlen)
예제 #39
0
import matplotlib.pyplot as plt
from feynman import Diagram

fig = plt.figure(figsize=(10.,10.))
ax = fig.add_axes([0,0,1,1], frameon=False)

diagram = Diagram(ax)
diagram.text(.4,0.9,"Associated Vector Boson", fontsize=40)
diagram.text(.6,0.83,"(VH or 'Higgs Strahlung')", fontsize=40)
in1 = diagram.vertex(xy=(.1,.75), marker='')
in2= diagram.vertex(xy=(.1,.25), marker='')
v1 = diagram.vertex(xy=(.35,.5))
v2 = diagram.vertex(xy=(.65,.5))
higgsout = diagram.vertex(xy=(.9,.75))
out1 = diagram.vertex(xy=(.9,.25),marker='')

q1 = diagram.line(in1, v1)
q2 = diagram.line(v1, in2)
wz1 = diagram.line(v1, v2, style='wiggly')
wz2 = diagram.line(v2, out1, style='wiggly')
higgs = diagram.line(v2, higgsout, arrow=False, style='dashed')

q1.text("q",fontsize=30)
q2.text(r"$\bar{\mathrm{q}}$",fontsize=30)
diagram.text(0.5,0.55,"$Z/W^\pm$",fontsize=30)
diagram.text(0.69,0.35,"$Z/W^\pm$",fontsize=30)
higgs.text("H",fontsize=30)

diagram.plot()
plt.show()
예제 #40
0
opwidth = 0.3
linlen = 0.4

W_style = dict(style='double wiggly', nwiggles=2)
v_style = dict(style='simple wiggly', nwiggles=2)

# First diagram
D1 = Diagram(ax)

xy = [0.2, y0]
v01 = D1.verticle(xy)

xy[0] += linlen
v02 = D1.verticle(v01.xy, dx=linlen)

W = D1.line(v01, v02, **W_style)

text_prop = dict(y=0.06, fontsize=22)

W.text("$W$", **text_prop)

D1.text(.75, y0, "=", fontsize=30)

xy = [0.9, y0]
v11 = D1.verticle(xy)
v13 = D1.verticle(v11.xy, dx=opwidth)
v14 = D1.verticle(v13.xy, dx=linlen)

O = D1.operator([v11, v13], c=1.1)
O.text("${\\varepsilon^{-1}}$", x=.0, y=.01, fontsize=35)
D1.line(v13, v14, **v_style)
예제 #41
0
ax = fig.add_axes([0,0,1,1], frameon=False)

diagram = Diagram(ax)
#diagram.text(.5,0.9,r"Vector Boson Fusion (VBF) Higgs $\rightarrow\tau\tau$",fontsize=40)
in1 = diagram.vertex(xy=(.1,.8), marker='')
in2= diagram.vertex(xy=(.1,.2), marker='')
v1 = diagram.vertex(xy=(.3,.7))
v2 = diagram.vertex(xy=(.3,.3))
v3 = diagram.vertex(xy=(.5,.5))
out1 = diagram.vertex(xy=(.9,.8), marker='')
out2 = diagram.vertex(xy=(.9,.2), marker='')
higgsf = diagram.vertex(xy=(.7,.5))
tau1 = diagram.vertex(xy=(.9,.7), marker='')
tau2 = diagram.vertex(xy=(.9,.3), marker='')

q1 = diagram.line(in1, v1, arrow=False)
q2 = diagram.line(in2, v2, arrow=False)
wz1 = diagram.line(v1, v3, style='wiggly')
wz2 = diagram.line(v2, v3, style='wiggly')
higgs = diagram.line(v3, higgsf, style='dashed', arrow=False)
q3 = diagram.line(v1, out1, arrow=False)
q4 = diagram.line(v2, out2, arrow=False)
t1 = diagram.line(higgsf, tau1)
t2 = diagram.line(tau2, higgsf)

q1.text("$q_1$",fontsize=30)
q2.text("$q_2$",fontsize=30)
diagram.text(v3.xy[0], v3.xy[1]+0.11, "$Z/W^\pm$",fontsize=30)
wz2.text("$Z/W^\pm$",fontsize=30)
q3.text("$q_3$",fontsize=30)
q4.text("$q_4$",fontsize=30)
예제 #42
0
opwidth = 0.3
linlen = 0.8
tail_marker = 'o'
Gamma_width = .3

W_style = dict(style='double wiggly', nwiggles=4)
G_style = dict(style='double elliptic',
                ellipse_excentricity=-1.2, ellipse_spread=.3,
                arrow=True, arrow_param={'width':0.05})

D = Diagram(ax)

xy = [0.2, y0]
v01 = D.verticle(xy)
v02 = D.verticle(v01.xy, dx=opwidth)
P = D.operator([v01,v02], c=1.3)
P.text("$P$")

D.text(.70, y0, "=", fontsize=30)

xy[0] = 0.9
v21 = D.verticle(xy)
v22 = D.verticle(xy, dx=linlen)

l21 = D.line(v22, v21, **G_style)
l21 = D.line(v21, v22, **G_style)

D.plot()
fig.savefig('pdf/gw-P.pdf')

예제 #43
0
y0 = sum(ax.get_ylim()) / 2

# Initialize diagram with the ax
D = Diagram(ax)

# Polarizability operator
v11 = D.vertex([0.1, y0])
v12 = D.vertex(v11.xy, dx=0.15)
P = D.operator([v11, v12], c=1.3)  # c is the excentricity of the patch
P.text("$P$")

# Symbols
D.text(.35, y0, "=", fontsize=30)

# Propagator lines
G_style = dict(style='double elliptic',
               ellipse_excentricity=-1.2,
               ellipse_spread=.3,
               arrow=True,
               arrow_param={'width': 0.03})

v21 = D.vertex([0.45, y0])
v22 = D.vertex(v21.xy, dx=0.4)

G1 = D.line(v22, v21, **G_style)
G2 = D.line(v21, v22, **G_style)

# Plot and show
D.plot()
plt.show()
예제 #44
0
import matplotlib

from feynman import Diagram

fig = matplotlib.pyplot.figure(figsize=(1., 1.))
ax = fig.add_axes([0, 0, 10, 10], frameon=False)

diagram = Diagram(ax)
in1 = diagram.verticle(xy=(.1, .5))
in2 = diagram.verticle(xy=(.4, .5))
v1 = diagram.verticle(xy=(.65, .65))
v2 = diagram.verticle(xy=(.65, .35))
out1 = diagram.verticle(xy=(.9, .65), marker='')
out2 = diagram.verticle(xy=(.9, .35), marker='')

higgs = diagram.line(in1, in2, arrow=False, style='dashed')
nu1 = diagram.line(v1, in2)
nu2 = diagram.line(in2, v2)
w = diagram.line(v1, v2, style='wiggly')
lep = diagram.line(out1, v1)
tau = diagram.line(v2, out2)

nu1.text(r"$\nu_\ell$", fontsize=40)
nu2.text(r"$\nu_\tau$", fontsize=40)
lep.text(r"$\ell^+$", fontsize=40)
tau.text(r"$\tau^-$", fontsize=40)
#w.text(r"W$^\pm$",fontsize=40)
diagram.text(0.72, 0.5, "$W^\pm$", fontsize=40)
#diagram.text(0.69,0.35,"$Z/W^\pm$",fontsize=30)
higgs.text("H", fontsize=40)
예제 #45
0
"""

import matplotlib.pyplot as plt
from feynman import Diagram

# If no Axes is given, a new one is initialized.
diagram = Diagram()

# Create four vertices.
v1 = diagram.vertex(xy=(.1,.5), marker='')
v2 = diagram.vertex(v1.xy, dx=.2)
v3 = diagram.vertex(v2.xy, dx=.4)
v4 = diagram.vertex(v3.xy, dx=.2, marker='')

# Create four lines.
# By default, 'simple' lines have arrows
# and others flavours such as 'wiggly' or 'loopy' don't.
l12 = diagram.line(v1, v2)
l23 = diagram.line(v2, v3)
l34 = diagram.line(v3, v4, arrow=True)
w23 = diagram.line(v2, v3, style='wiggly elliptic')

# Add labels.
l12.text("p")
w23.text("q")
l23.text("p - q")
l34.text("p")

diagram.plot()
plt.show()