def timestamps_roughly_match(f1, f2): parser = GenericSubtitleParser() extractor = SubtitleSpeechTransformer(sample_rate=ffsubsync.DEFAULT_FRAME_RATE) pipe = make_pipeline(parser, extractor) f1_bitstring = pipe.fit_transform(f1).astype(bool) f2_bitstring = pipe.fit_transform(f2).astype(bool) return np.alltrue(f1_bitstring == f2_bitstring)
def test_speech_extraction(sample_rate, start_seconds): parser = GenericSubtitleParser(start_seconds=start_seconds) extractor = SubtitleSpeechTransformer(sample_rate=sample_rate, start_seconds=start_seconds) pipe = make_pipeline(parser, extractor) bitstring = pipe.fit_transform(BytesIO(fake_srt)).astype(bool) bitstring_shifted_left = np.append(bitstring[1:], [False]) bitstring_shifted_right = np.append([False], bitstring[:-1]) bitstring_cumsum = np.cumsum(bitstring) consec_ones_end_pos = np.nonzero(bitstring_cumsum * (bitstring ^ bitstring_shifted_left) * (bitstring_cumsum != np.cumsum(bitstring_shifted_right)))[0] prev = 0 for pos, sub in zip(consec_ones_end_pos, parser.subs_): start = int(round(sub.start.total_seconds() * sample_rate)) duration = sub.end.total_seconds() - sub.start.total_seconds() stop = start + int(round(duration * sample_rate)) assert bitstring_cumsum[pos] - prev == stop - start prev = bitstring_cumsum[pos]
def test_max_time_found(): parser = GenericSubtitleParser() extractor = SubtitleSpeechTransformer(sample_rate=100) pipe = make_pipeline(parser, extractor) pipe.fit(BytesIO(fake_srt)) assert extractor.max_time_ == 6.062