def trackmate(self):
        calibration = self.imp.getCalibration()
        model = Model()
        model.setLogger(Logger.IJ_LOGGER)
        settings = Settings()
        settings.setFrom(self.imp)
        # Configure detector - We use the Strings for the keys
        settings.detectorFactory = LogDetectorFactory()
        settings.detectorSettings = {
            'DO_SUBPIXEL_LOCALIZATION': True,
            'RADIUS': calibration.getX(self.trackmateSize),
            'TARGET_CHANNEL': 1,
            'THRESHOLD': self.trackmateThreashold,
            'DO_MEDIAN_FILTERING': True,
        }

        # Configure spot filters - Classical filter on quality
        filter1 = FeatureFilter('QUALITY', 0.01, True)
        settings.addSpotFilter(filter1)
        settings.addSpotAnalyzerFactory(SpotIntensityMultiCAnalyzerFactory())

        settings.initialSpotFilterValue = 1

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()

        trackmate = TrackMate(model, settings)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            print("NOT OK")

        ok = trackmate.process()
        if not ok:
            print("NOT OK")

        #----------------
        # Display results
        #----------------

        #selectionModel = SelectionModel(model)
        #displayer =  HyperStackDisplayer(model, selectionModel, self.imp)
        #displayer.render()
        #displayer.refresh()

        # Echo results with the logger we set at start:
        spots = model.getSpots()
        return spots.iterable(True)
	# Use a value of 1-2 work the best in most cases
    settings.trackerSettings['LINKING_FEATURE_PENALTIES'] = {"QUALITY":1.0}
	
    # Add the analyzers for some spot features
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
       
    # Add an analyzer for some track features, such as the track mean speed.
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

    settings.addTrackAnalyzer(TrackBranchingAnalyzer())
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())
         
    # Use a value between 30-35 works the best
    track_filter = FeatureFilter('TRACK_MEAN_QUALITY', 100, True)
    settings.addTrackFilter(track_filter)
          
    settings.initialSpotFilterValue = 1
       
    # print(str(settings))
          
    #----------------------
    # Instantiate trackmate
    #----------------------
       
    trackmate = TrackMate(model, settings)
          
    #------------
    # Execute all
    #------------
예제 #3
0
settings = Settings()
settings.setFrom(imp)

# Configure detector - We use the Strings for the keys
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = {
    'DO_SUBPIXEL_LOCALIZATION': True,
    'RADIUS': 2.5,
    'TARGET_CHANNEL': 1,
    'THRESHOLD': 0.,
    'DO_MEDIAN_FILTERING': False,
}

# Configure spot filters - Classical filter on quality
filter1 = FeatureFilter('QUALITY', 1, True)
settings.addSpotFilter(filter1)

# Configure tracker - We want to allow merges and fusions
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
)  # almost good enough
settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
settings.trackerSettings['ALLOW_TRACK_MERGING'] = True

# Configure track analyzers - Later on we want to filter out tracks
# based on their displacement, so we need to state that we want
# track displacement to be calculated. By default, out of the GUI,
# not features are calculated.

# The displacement feature is provided by the TrackDurationAnalyzer.
예제 #4
0
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

# Configure detector - We use the Strings for the keys
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = {
    'DO_SUBPIXEL_LOCALIZATION': DO_SUBPIXEL_LOCALIZATION,
    'RADIUS': RADIUS,
    'TARGET_CHANNEL': TARGET_CHANNEL,
    'THRESHOLD': THRESHOLD,
    'DO_MEDIAN_FILTERING': DO_MEDIAN_FILTERING,
}

# Configure spot filters on contrast
if TARGET_CHANNEL == 1:
    filter1 = FeatureFilter('CONTRAST', 0.13, True)
    settings.addSpotFilter(filter1)

# Configure tracker
#		from http://forum.imagej.net/t/trackmate-scripting-automatically-exporting-spots-in-tracks-links-in-tracks-tracks-statistics-and-branching-analysis-to-csv/6256
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
)  # almost good enough

settings.trackerSettings['LINKING_MAX_DISTANCE'] = LINKING_MAX_DISTANCE
settings.trackerSettings['LINKING_FEATURE_PENALTIES'] = {}
#gap closing
settings.trackerSettings['ALLOW_GAP_CLOSING'] = ALLOW_GAP_CLOSING
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = GAP_CLOSING_MAX_DISTANCE
settings.trackerSettings['MAX_FRAME_GAP'] = MAX_FRAME_GAP
settings.trackerSettings['GAP_CLOSING_FEATURE_PENALTIES'] = {}
예제 #5
0
def track():
    imp = IJ.getImage()
    nChannels = imp.getNChannels()  # Get the number of channels 
    orgtitle = imp.getTitle()
    IJ.run("Subtract Background...", "rolling=50 sliding stack")
    IJ.run("Enhance Contrast...", "saturated=0.3")
    IJ.run("Multiply...", "value=10 stack")
    IJ.run("Subtract Background...", "rolling=50 sliding stack")
    IJ.run("Set Scale...", "distance=0")
    
    channels = ChannelSplitter.split(imp)
    imp_GFP = channels[0]
    imp_RFP = channels[1]
    IJ.selectWindow(orgtitle)
    IJ.run("Close")
    ic = ImageCalculator()
    imp_merge = ic.run("Add create stack", imp_GFP, imp_RFP)
    imp_merge.setTitle("add_channels")
    imp_merge.show()
    imp_RFP.show()
    imp_GFP.show()
    
    imp5 = ImagePlus()
    IJ.run(imp5, "Merge Channels...", "c1=[" + imp_merge.title + "] c2=" + imp_GFP.title + ' c3=' + imp_RFP.title + " create")
    print("c1=[" + imp_merge.title + "] c2=" + imp_GFP.title + ' c3=' + imp_RFP.title + " create")
    imp5.show()
    imp5 = IJ.getImage()
    
    nChannels = imp5.getNChannels()
    # Setup settings for TrackMate
    settings = Settings()
    settings.setFrom(imp5)
    
    # Spot analyzer: we want the multi-C intensity analyzer.
    settings.addSpotAnalyzerFactory(SpotMultiChannelIntensityAnalyzerFactory())   

    # Spot detector.
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = settings.detectorFactory.getDefaultSettings()
    settings.detectorSettings['TARGET_CHANNEL'] = 1
    settings.detectorSettings['RADIUS'] = 24.0
    settings.detectorSettings['THRESHOLD'] = 0.0
    
    # Spot tracker.
    # Configure tracker - We don't want to allow merges or splits
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap() # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = False
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 8.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 8.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 1
    
    # Configure track filters
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())
    
    filter1 = FeatureFilter('TRACK_DURATION', 20, True)
    settings.addTrackFilter(filter1)
    
    # Run TrackMate and store data into Model.
    model = Model()
    trackmate = TrackMate(model, settings)
    
    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
            
    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
    
    selectionModel = SelectionModel(model)
    displayer =  HyperStackDisplayer(model, selectionModel, imp5)
    displayer.render()
    displayer.refresh()
    
    IJ.log('TrackMate completed successfully.')
    IJ.log('Found %d spots in %d tracks.' % (model.getSpots().getNSpots(True) , model.getTrackModel().nTracks(True)))
    
    # Print results in the console.
    headerStr = '%10s %10s %10s %10s %10s %10s' % ('Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z')
    rowStr = '%10d %10d %10d %10.1f %10.1f %10.1f'
    for i in range( nChannels ):
        headerStr += (' %10s' % ( 'C' + str(i+1) ) )
        rowStr += ( ' %10.1f' )
    
    #open a file to save results
    myfile = open('/home/rickettsia/Desktop/data/Clamydial_Image_Analysis/EMS_BMECBMELVA_20X_01122019/data/'+orgtitle.split('.')[0]+'.csv', 'wb')
    wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
    wr.writerow(['Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z', 'Channel_1', 'Channel_2'])
    
    IJ.log('\n')
    IJ.log(headerStr)
    tm = model.getTrackModel()
    trackIDs = tm.trackIDs(True)
    for trackID in trackIDs:
        spots = tm.trackSpots(trackID)
    
        # Let's sort them by frame.
        ls = ArrayList(spots)
        
        for spot in ls:
            values = [spot.ID(), trackID, spot.getFeature('FRAME'), \
                spot.getFeature('POSITION_X'), spot.getFeature('POSITION_Y'), spot.getFeature('POSITION_Z')]
            for i in range(nChannels):
                values.append(spot.getFeature('MEAN_INTENSITY%02d' % (i+1)))
                
            IJ.log(rowStr % tuple(values))
            l1 = (values[0], values[1], values[2], values[3], values[4], values[5], values[7], values[8])
            wr.writerow(l1)
    
    myfile.close()
    IJ.selectWindow("Merged")
    IJ.run("Close")
예제 #6
0
    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = DogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 0.6,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': 50.0,
        'DO_MEDIAN_FILTERING': False,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 50, True)
    settings.addSpotFilter(filter1)

    filter2 = FeatureFilter('POSITION_Z', 0.3, True)
    settings.addSpotFilter(filter2)

    filter3 = FeatureFilter('POSITION_Z', 3.0, False)
    settings.addSpotFilter(filter3)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough

    # Frame to frame linking
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 2.0
예제 #7
0
 # Configure spot filters
 w = imp.getWidth()
 h = imp.getHeight()
 y_lims = (2, h - 2)
 if w == 140:
     x_lims = (8, 132)
 elif w == 180:
     x_lims = (8, 160)
 elif w == 200:
     x_lims = (41, 140)
 elif w == 220:
     x_lims = (10, 160)
 elif w == 248:
     x_lims = (85, 205)
     y_lims = (25, 35)
 filter0 = FeatureFilter('MEAN_INTENSITY',
                         spot_mean_intensity[i_col], True)
 filter1 = FeatureFilter('STANDARD_DEVIATION',
                         spot_standard_deviation[i_col], True)
 filter2 = FeatureFilter('POSITION_X', x_lims[0] * resolution,
                         True)
 filter3 = FeatureFilter('POSITION_X', x_lims[1] * resolution,
                         False)
 filter4 = FeatureFilter('POSITION_Y', y_lims[0] * resolution,
                         True)
 filter5 = FeatureFilter('POSITION_Y', y_lims[1] * resolution,
                         False)
 settings.addSpotFilter(filter0)
 settings.addSpotFilter(filter1)
 settings.addSpotFilter(filter2)
 settings.addSpotFilter(filter3)
 settings.addSpotFilter(filter4)
    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': Radius,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': Spot_thres,
        'DO_MEDIAN_FILTERING': False,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', Spot_quality, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    #settings.trackerFactory ={
    #	'LINKING_MAX_DISTANCE' : 10,
    #	'GAP-CLOSING_MAX_DISTANCE': 10,
    #	'GAP-CLOSING_MAX_FRAME_GAP': 2,
    #}
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = True

    # Configure track analyzers - Later on we want to filter out tracks
def processImages(cfg, wellName, wellPath, images):
    firstImage = IJ.openImage(images[0][0][0][0])
    imgWidth = firstImage.getWidth()
    imgHeight = firstImage.getHeight()

    for c in range(0, cfg.getValue(ELMConfig.numChannels)):
        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        if cfg.getValue(ELMConfig.chanLabel)[c] in cfg.getValue(
                ELMConfig.chansToSkip):
            continue
        imColorSeq = ImageStack(imgWidth, imgHeight)
        imSeq = ImageStack(imgWidth, imgHeight)
        totalHist = []
        for z in range(0, cfg.getValue(ELMConfig.numZ)):
            for t in range(0, cfg.getValue(ELMConfig.numT)):

                currIP = IJ.openImage(images[c][z][t][0])
                imColorSeq.addSlice(currIP.duplicate().getProcessor())

                currIP = ELMImageUtils.getGrayScaleImage(
                    currIP, c, chanName, cfg)

                imSeq.addSlice(currIP.getProcessor())
                imgStats = currIP.getStatistics()
                currHist = imgStats.getHistogram()
                if not totalHist:
                    for i in range(len(currHist)):
                        totalHist.append(currHist[i])
                else:
                    for i in range(len(currHist)):
                        totalHist[i] += currHist[i]

        if cfg.hasValue(ELMConfig.thresholdFromWholeRange) and cfg.getValue(
                ELMConfig.thresholdFromWholeRange) == True:
            threshMethod = "Otsu"  # Default works very poorly for this data
            if cfg.hasValue(ELMConfig.thresholdMethod):
                threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
            thresholder = AutoThresholder()
            computedThresh = thresholder.getThreshold(threshMethod, totalHist)
            cfg.setValue(ELMConfig.imageThreshold, computedThresh)
            print("\tComputed threshold from total hist (" + threshMethod +
                  "): " + str(computedThresh))
            print()
        else:
            print("\tUsing threshold computed on individual images!")
            print()
            computedThresh = 0

        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        imp = ImagePlus()
        imp.setStack(imSeq)
        imp.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        imp.setTitle(wellName + ", channel " + str(c))

        impColor = ImagePlus()
        impColor.setStack(imColorSeq)
        impColor.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        impColor.setTitle(wellName + ", channel " + str(c) + " (Color)")

        #----------------------------
        # Create the model object now
        #----------------------------

        # Some of the parameters we configure below need to have
        # a reference to the model at creation. So we create an
        # empty model now.

        model = Model()

        # Send all messages to ImageJ log window.
        model.setLogger(Logger.IJ_LOGGER)

        pa_features = [
            "Area", "PercentArea", "Mean", "StdDev", "Mode", "Min", "Max", "X",
            "Y", "XM", "YM", "Perim.", "BX", "BY", "Width", "Height", "Major",
            "Minor", "Angle", "Circ.", "Feret", "IntDen", "Median", "Skew",
            "Kurt", "RawIntDen", "FeretX", "FeretY", "FeretAngle", "MinFeret",
            "AR", "Round", "Solidity"
        ]

        featureNames = {}
        featureShortNames = {}
        featureDimensions = {}
        isInt = {}
        for feature in pa_features:
            featureNames[feature] = feature
            featureShortNames[feature] = feature
            featureDimensions[feature] = Dimension.STRING
            isInt[feature] = False

        model.getFeatureModel().declareSpotFeatures(pa_features, featureNames,
                                                    featureShortNames,
                                                    featureDimensions, isInt)

        #------------------------
        # Prepare settings object
        #------------------------

        settings = Settings()
        settings.setFrom(imp)

        dbgPath = os.path.join(wellPath, 'debugImages_' + chanName)
        if not os.path.exists(dbgPath):
            os.makedirs(dbgPath)

        if cfg.hasValue(ELMConfig.thresholdMethod):
            threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
        else:
            threshMethod = "Default"

        # Configure detector - We use the Strings for the keys
        settings.detectorFactory = ThresholdDetectorFactory()
        settings.detectorSettings = {
            'THRESHOLD': computedThresh,
            'ABOVE': True,
            'DEBUG_MODE': True,
            'DEBUG_OUTPATH': dbgPath,
            'THRESHOLD_METHOD': threshMethod
        }

        #settings.detectorFactory = LocalThresholdDetectorFactory()
        #settings.detectorSettings = {
        #    'THRESHOLD' : computedThresh,
        #    'DEBUG_MODE' : True,
        #    'DEBUG_OUTPATH' : dbgPath
        #}

        # Configure spot filters - Classical filter on quality
        filter1 = FeatureFilter('QUALITY', 150, True)
        settings.addSpotFilter(filter1)

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
        )  # almost good enough

        # Linking
        settings.trackerSettings[TrackerKeys.KEY_LINKING_MAX_DISTANCE] = 220.0
        # in pixels

        linkFeaturePenalties = HashMap()
        linkFeaturePenalties['Area'] = 1.0
        linkFeaturePenalties['POSITION_X'] = 1.0
        linkFeaturePenalties['POSITION_Y'] = 1.0
        #linkFeaturePenalties['Circ.'] = 1.0
        #linkFeaturePenalties['Mean'] = 1.0

        settings.trackerSettings[
            TrackerKeys.KEY_LINKING_FEATURE_PENALTIES] = linkFeaturePenalties
        # Gap closing
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_GAP_CLOSING] = True
        settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_MAX_FRAME_GAP] = 8
        settings.trackerSettings[
            TrackerKeys.KEY_GAP_CLOSING_MAX_DISTANCE] = 120.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_GAP_CLOSING_FEATURE_PENALTIES));
        # Track splitting
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_SPLITTING] = False
        settings.trackerSettings[TrackerKeys.KEY_SPLITTING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_SPLITTING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_SPLITTING_FEATURE_PENALTIES));
        # Track merging
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_MERGING] = True
        settings.trackerSettings[TrackerKeys.KEY_MERGING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_MERGING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_MERGING_FEATURE_PENALTIES));
        # Others
        settings.trackerSettings[TrackerKeys.KEY_BLOCKING_VALUE] = float("inf")
        settings.trackerSettings[
            TrackerKeys.KEY_ALTERNATIVE_LINKING_COST_FACTOR] = 1.05
        settings.trackerSettings[TrackerKeys.KEY_CUTOFF_PERCENTILE] = 0.9

        # Configure track analyzers - Later on we want to filter out tracks
        # based on their displacement, so we need to state that we want
        # track displacement to be calculated. By default, out of the GUI,
        # no features are calculated.

        # The displacement feature is provided by the TrackDurationAnalyzer.
        settings.addTrackAnalyzer(TrackDurationAnalyzer())
        settings.addTrackAnalyzer(TrackBranchingAnalyzer())
        settings.addTrackAnalyzer(TrackIndexAnalyzer())
        settings.addTrackAnalyzer(TrackLocationAnalyzer())
        settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

        settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
        settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

        # Configure track filters - We want to get rid of the two immobile spots at
        # the bottom right of the image. Track displacement must be above 10 pixels.
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)

        #print("Spot feature analyzers: " + settings.toStringFeatureAnalyzersInfo())

        #-------------------
        # Instantiate plugin
        #-------------------

        trackmate = TrackMate(model, settings)
        trackmate.setNumThreads(1)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        print("Processing " + chanName + "...")
        ok = trackmate.process()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        #----------------
        # Display results
        #----------------
        print("Rendering...")

        # Set spot names based on track IDs
        # This allows track IDs to be displayed in the rendered video
        for tId in model.getTrackModel().trackIDs(True):
            trackSpots = model.getTrackModel().trackSpots(tId)
            for spot in trackSpots:
                spot.setName(str(tId))

        # Determine sub-tracks within a track
        # Since tracks can merge, we want to keep track of which track a spot is
        # in prior to the merge
        spotToSubTrackMap = {}
        spotIt = model.getSpots().iterator(False)
        trackModel = model.getTrackModel()
        subTrackCount = {}
        while spotIt.hasNext():
            spot = spotIt.next()
            spotEdges = trackModel.edgesOf(spot)
            # Find merge points within a track: ignore spots with fewer than 2 edges
            if (len(spotEdges) < 2):
                continue

            # We have a merge if we have multiple incoming edges
            incomingEdges = 0
            edgeIt = spotEdges.iterator()
            ancestorSpots = []
            while edgeIt.hasNext():
                edge = edgeIt.next()
                src = trackModel.getEdgeSource(edge)
                dst = trackModel.getEdgeTarget(edge)
                if dst.ID() == spot.ID():
                    ancestorSpots.append(src)
                    incomingEdges += 1
            # Ignore non-merges
            if incomingEdges < 2:
                continue

            trackId = trackModel.trackIDOf(spot)
            if trackId in subTrackCount:
                subTrackId = subTrackCount[trackId]
            else:
                subTrackId = 1
            for ancestorSpot in ancestorSpots:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap,
                                       ancestorSpot, subTrackId, trackId,
                                       False)
                subTrackId += 1
            subTrackCount[trackId] = subTrackId

        # Spots after the last merge still need to be labeled
        for tId in trackModel.trackIDs(True):
            trackSpots = trackModel.trackSpots(tId)
            spotIt = trackSpots.iterator()
            lastSpot = None
            while spotIt.hasNext():
                spot = spotIt.next()
                outgoingEdges = 0
                spotEdges = trackModel.edgesOf(spot)
                edgeIt = spotEdges.iterator()
                while edgeIt.hasNext():
                    edge = edgeIt.next()
                    src = trackModel.getEdgeSource(edge)
                    dst = trackModel.getEdgeTarget(edge)
                    if src.ID() == spot.ID():
                        outgoingEdges += 1
                if outgoingEdges == 0 and len(spotEdges) > 0:
                    lastSpot = spot

            if tId in subTrackCount:
                subTrackId = subTrackCount[tId]
            else:
                subTrackId = 1
            if not lastSpot == None:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap, lastSpot,
                                       subTrackId, tId, True)

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_spotToTrackMap.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write('Spot Id, Track Sub Id, Track Id, Frame \n')
        for spotId in spotToSubTrackMap:
            trackFile.write(
                str(spotId) + ', ' + ','.join(spotToSubTrackMap[spotId]) +
                '\n')
        trackFile.close()

        # Write Edge Set
        trackOut = os.path.join(wellPath, chanName + "_mergeEdgeSet.csv")
        trackFile = open(trackOut, 'w')
        trackFile.write('Track Id, Spot Id, Spot Id \n')
        edgeIt = trackModel.edgeSet().iterator()
        while edgeIt.hasNext():
            edge = edgeIt.next()
            src = trackModel.getEdgeSource(edge)
            dst = trackModel.getEdgeTarget(edge)
            trackId = trackModel.trackIDOf(edge)
            srcSubTrack = spotToSubTrackMap[src.ID()][0]
            dstSubTrack = spotToSubTrackMap[dst.ID()][0]
            if not srcSubTrack == dstSubTrack:
                trackFile.write(
                    str(trackId) + ', ' + str(src.ID()) + ', ' +
                    str(dst.ID()) + '\n')
        trackFile.close()

        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, impColor)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_COLORING,
            PerTrackFeatureColorGenerator(model,
                                          TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_SPOT_COLORING,
            SpotColorGeneratorPerTrackFeature(model,
                                              TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(TrackMateModelView.KEY_DISPLAY_SPOT_NAMES,
                                     True)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_MODE,
            TrackMateModelView.TRACK_DISPLAY_MODE_LOCAL_BACKWARD_QUICK)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_DEPTH, 2)
        displayer.render()
        displayer.refresh()

        trackmate.getSettings().imp = impColor
        coa = CaptureOverlayAction(None)
        coa.execute(trackmate)

        WindowManager.setTempCurrentImage(coa.getCapture())
        IJ.saveAs('avi', os.path.join(wellPath, chanName + "_out.avi"))

        imp.close()
        impColor.close()
        displayer.clear()
        displayer.getImp().hide()
        displayer.getImp().close()
        coa.getCapture().hide()
        coa.getCapture().close()

        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))

        # The feature model, that stores edge and track features.
        fm = model.getFeatureModel()

        # Write output for tracks
        numTracks = model.getTrackModel().trackIDs(True).size()
        print "Writing track data for " + str(numTracks) + " tracks."
        trackDat = {}
        for tId in model.getTrackModel().trackIDs(True):
            track = model.getTrackModel().trackSpots(tId)

            # Ensure track spots dir exists
            trackOut = os.path.join(wellPath, chanName + "_track_spots")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')

            # Write Header
            header = 'Name, ID, Frame, '
            for feature in track.toArray()[0].getFeatures().keySet():
                if feature == 'Frame':
                    continue
                header += feature + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)
            # Write spot data
            avgTotalIntensity = 0
            for spot in track:
                #print spot.echo()
                data = [
                    spot.getName(),
                    str(spot.ID()),
                    str(spot.getFeature('FRAME'))
                ]
                for feature in spot.getFeatures():
                    if feature == 'Frame':
                        continue
                    elif feature == 'TOTAL_INTENSITY':
                        avgTotalIntensity += spot.getFeature(feature)
                    data.append(str(spot.getFeature(feature)))
                trackFile.write(','.join(data) + '\n')
            trackFile.close()
            avgTotalIntensity /= len(track)

            # Write out track stats
            # Make sure dir exists
            trackOut = os.path.join(wellPath, chanName + "_tracks")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')
            # Fetch the track feature from the feature model.
            header = ''
            for featName in fm.getTrackFeatureNames():
                header += featName + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)

            features = ''
            for featName in fm.getTrackFeatureNames():
                features += str(fm.getTrackFeature(tId, featName)) + ', '
            features = features[0:len(features) - 2]
            features += '\n'
            trackFile.write(features)
            trackFile.write('\n')
            trackFile.close()

            trackDat[tId] = [
                str(tId),
                str(fm.getTrackFeature(tId, 'TRACK_DURATION')),
                str(avgTotalIntensity),
                str(fm.getTrackFeature(tId, 'TRACK_START')),
                str(fm.getTrackFeature(tId, 'TRACK_STOP'))
            ]

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_trackSummary.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write(
            'Track Id, Duration, Avg Total Intensity, Start Frame, Stop Frame \n'
        )
        for track in trackDat:
            trackFile.write(','.join(trackDat[track]) + '\n')
        trackFile.close()

        trackOut = os.path.join(wellPath, chanName + "_trackModel.xml")
        trackFile = File(trackOut)
        writer = TmXmlWriter(trackFile, model.getLogger())
        #writer.appendLog( logPanel.getTextContent() );
        writer.appendModel(trackmate.getModel())
        writer.appendSettings(trackmate.getSettings())
        #writer.appendGUIState( controller.getGuimodel() );
        writer.writeToFile()

    model.clearSpots(True)
    model.clearTracks(True)

    return trackDat
예제 #10
0
            'DO_MEDIAN_FILTERING': True,
        }

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
        )  # almost good enough
        settings.trackerSettings['LINKING_MAX_DISTANCE'] = 0.67
        settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = False
        settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
        settings.trackerSettings['ALLOW_GAP_CLOSING'] = False
        #		settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 0.1
        #		settings.trackerSettings['MAX_FRAME_GAP']= 1
        settings.addTrackAnalyzer(TrackDurationAnalyzer())

        filter2 = FeatureFilter('TRACK_DURATION', 5, True)
        settings.addTrackFilter(filter2)

        #-------------------
        # Instantiate plugin
        #-------------------

        trackmate = TrackMate(model, settings)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))
예제 #11
0
settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
settings.trackerSettings['MERGING_MAX_DISTANCE'] = 15.0
settings.trackerSettings['MERGING_FEATURE_PENALTIES'] = {}
#etc
#settings.trackerSettings['ALTERNATIVE_LINKING_COST_FACTOR'] = 1.05
#settings.trackerSettings['BLOCKING_VALUE'] = Infinity
#settings.trackerSettings['CUTOFF_PERCENTILE'] = 0.9			

# Configure track analyzers
# The displacement feature is provided by the TrackDurationAnalyzer.

settings.addTrackAnalyzer(TrackDurationAnalyzer())

# Configure track filters - We want to get rid of the two immobile spots

filter2 = FeatureFilter('TRACK_DISPLACEMENT', 10, True)
settings.addTrackFilter(filter2)

#-------------------
# Instantiate plugin
#-------------------

trackmate = TrackMate(model, settings)
   
#--------
# Process
#--------

ok = trackmate.checkInput()
if not ok:
	sys.exit(str(trackmate.getErrorMessage()))
예제 #12
0
def track_cells(folder_w, filename, imp, correction):
    #imp = IJ.openImage(os.path.join(folder,filename))
    #imp.show()

    #get image dimensions, set ROI remove part of flouresncent ring
    x_size = ImagePlus.getDimensions(imp)[0]
    y_size = ImagePlus.getDimensions(imp)[1]
    x_start = 0
    y_start = 0
    #calculate alternative ROI
    if crop_ring:
        x_start = 170 / 2
        y_start = 170 / 2
        x_size = x_size - 170
        y_size = y_size - 170
    print(
        str(x_start) + ", " + str(y_start) + ", " + str(x_size) + ", " +
        str(y_size))
    imp.setRoi(OvalRoi(x_start, y_start, x_size, y_size))
    #imp_dup = imp.duplicate()
    #imp_dup.show()
    #red_corrected_img.show()

    IJ.run(imp, "Make Inverse", "")
    IJ.setForegroundColor(0, 0, 0)
    IJ.run(imp, "Fill", "stack")
    imp.killRoi()

    #imp.show()
    #sys.exit()

    #img_filename = filename+"_corrected_red_stack.tif"
    #folder_filename= os.path.join(well_folder,img_filename)
    #IJ.save(imp, folder_filename)

    #----------------------------
    # Create the model object now
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': SUBPIXEL_LOCALIZATION,
        'RADIUS': RADIUS,
        'TARGET_CHANNEL': TARGET_CHANNEL,
        'THRESHOLD': THRESHOLD,
        'DO_MEDIAN_FILTERING': MEDIAN_FILTERING,
    }

    # Configure spot filters - Classical filter on quality
    settings.initialSpotFilterValue = SPOT_FILTER
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotMorphologyAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotRadiusEstimatorFactory())

    filter1 = FeatureFilter('QUALITY', QUALITY, True)
    filter2 = FeatureFilter('CONTRAST', CONTRAST, True)
    filter2a = FeatureFilter('ESTIMATED_DIAMETER', MAX_ESTIMATED_DIAMETER,
                             False)
    filter2b = FeatureFilter('MEDIAN_INTENSITY', MAX_MEDIAN_INTENSITY, False)

    settings.addSpotFilter(filter1)
    settings.addSpotFilter(filter2)
    settings.addSpotFilter(filter2a)
    settings.addSpotFilter(filter2b)
    print(settings.spotFilters)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough

    ##adapted from https://forum.image.sc/t/trackmate-scripting-automatically-exporting-spots-in-tracks-links-in-tracks-tracks-statistics-and-branching-analysis-to-csv/6256
    #linking settings
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = LINKING_MAX_DISTANCE
    if LINKING_FEATURE_PENALTIES == True:
        settings.trackerSettings['LINKING_FEATURE_PENALTIES'] = {
            LINKING_FEATURE_PENALTIES_TYPE: LINKING_FEATURE_PENALTIES_VALUE
        }
    else:
        settings.trackerSettings['LINKING_FEATURE_PENALTIES'] = {}

    #gap closing settings
    settings.trackerSettings['ALLOW_GAP_CLOSING'] = ALLOW_GAP_CLOSING
    if ALLOW_GAP_CLOSING == True:
        settings.trackerSettings[
            'GAP_CLOSING_MAX_DISTANCE'] = GAP_CLOSING_MAX_DISTANCE
        settings.trackerSettings['MAX_FRAME_GAP'] = MAX_FRAME_GAP
        if GAP_CLOSING_FEATURE_PENALTIES == True:
            settings.trackerSettings['GAP_CLOSING_FEATURE_PENALTIES'] = {
                GAP_CLOSING_FEATURE_PENALTIES_TYPE:
                GAP_CLOSING_FEATURE_PENALTIES_VALUE
            }
        else:
            settings.trackerSettings['GAP_CLOSING_FEATURE_PENALTIES'] = {}

    #splitting settings
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = ALLOW_TRACK_SPLITTING
    if ALLOW_TRACK_SPLITTING == True:
        settings.trackerSettings[
            'SPLITTING_MAX_DISTANCE'] = SPLITTING_MAX_DISTANCE
        if SPLITTING_FEATURE_PENALTIES == True:
            settings.trackerSettings['SPLITTING_FEATURE_PENALTIES'] = {
                SPLITTING_FEATURE_PENALTIES_TYPE:
                SPLITTING_FEATURE_PENALTIES_VALUE
            }
        else:
            settings.trackerSettings['SPLITTING_FEATURE_PENALTIES'] = {}

    #merging settings
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = ALLOW_TRACK_MERGING
    if ALLOW_TRACK_MERGING == True:
        settings.trackerSettings['MERGING_MAX_DISTANCE'] = MERGING_MAX_DISTANCE
        if MERGING_FEATURE_PENALTIES == True:
            settings.trackerSettings['MERGING_FEATURE_PENALTIES'] = {
                MERGING_FEATURE_PENALTIES_TYPE: MERGING_FEATURE_PENALTIES_VALUE
            }
        else:
            settings.trackerSettings['MERGING_FEATURE_PENALTIES'] = {}

    print(settings.trackerSettings)

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())

    # Configure track filters - We want to get rid of the two immobile spots at
    # the bottom right of the image. Track displacement must be above 10 pixels.

    filter3 = FeatureFilter('TRACK_DISPLACEMENT', TRACK_DISPLACEMENT, True)
    filter4 = FeatureFilter('TRACK_START', TRACK_START, False)
    #filter5 = FeatureFilter('TRACK_STOP', float(imp.getStack().getSize())-1.1, True)

    settings.addTrackFilter(filter3)
    settings.addTrackFilter(filter4)
    #settings.addTrackFilter(filter5)

    #-------------------
    # Instantiate plugin
    #-------------------

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()

    #	if not ok:
    #sys.exit(str(trackmate.getErrorMessage()))

    #----------------
    # Display results
    #----------------

    #Set output folder and filename and create output folder
    well_folder = os.path.join(folder_w, filename)
    output_folder = os.path.join(well_folder, "Tracking")
    create_folder(output_folder)
    xml_file_name = filename + "_" + correction + "_trackmate_analysis.xml"
    folder_filename_xml = os.path.join(output_folder, xml_file_name)

    #ExportTracksToXML.export(model, settings, File(folder_filename_xml))
    outfile = TmXmlWriter(File(folder_filename_xml))
    outfile.appendSettings(settings)
    outfile.appendModel(model)
    outfile.writeToFile()

    # Echo results with the logger we set at start:
    #model.getLogger().log(str(model))

    #create araray of timepoint length with filled 0
    cell_counts = zerolistmaker(imp.getStack().getSize())
    if ok:
        for id in model.getTrackModel().trackIDs(True):
            # Fetch the track feature from the feature model.
            track = model.getTrackModel().trackSpots(id)
            for spot in track:
                # Fetch spot features directly from spot.
                t = spot.getFeature('FRAME')
                print(t)
                cell_counts[int(t)] = cell_counts[int(t)] + 1
    else:
        print("No spots detected!")

    if HEADLESS == False:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()
    del imp
    return (cell_counts + [len(model.getTrackModel().trackIDs(True))])
예제 #13
0
def run_trackmate(imp, path, filename, params, batch_mode=False):
    # initialize trackmate model
    model = Model()

    # Set logger - use to see outputs, not needed in batch mode
    model.setLogger(Logger.IJ_LOGGER)

    # Create setting object from image
    settings = Settings()
    settings.setFrom(imp)

    cal = imp.getCalibration()
    model.setPhysicalUnits("micron", "sec")

    # Configure detector
    settings.detectorFactory = LogDetectorFactory()
    #    settings.detectorFactory = DogDetectorFactory()

    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': params.do_subpixel_localization,
        'RADIUS': params.radius,
        'TARGET_CHANNEL': 0,
        'THRESHOLD': params.threshold,
        'DO_MEDIAN_FILTERING': params.do_median_filtering,
    }

    #    print(params)

    # Add spot filters
    filter_quality = FeatureFilter('QUALITY', params.quality, True)
    settings.addSpotFilter(filter_quality)
    filter_snr = FeatureFilter('SNR', params.snr, True)
    settings.addSpotFilter(filter_snr)

    # Compute spot features
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

    # Compute track features
    settings.addTrackAnalyzer(TrackBranchingAnalyzer())
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackIndexAnalyzer())
    settings.addTrackAnalyzer(TrackLocationAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())

    # Update model
    ModelFeatureUpdater(model, settings)

    # Configure tracker
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    settings.trackerSettings[
        'LINKING_MAX_DISTANCE'] = params.linking_max_distance
    settings.trackerSettings[
        'GAP_CLOSING_MAX_DISTANCE'] = params.gap_closing_max_distance
    settings.trackerSettings['MAX_FRAME_GAP'] = params.max_frame_gap

    # Add track filters
    filter_T1 = FeatureFilter('TRACK_DURATION', params.track_duration, True)
    filter_MTD = FeatureFilter('TRACK_DISPLACEMENT', params.track_displacement,
                               True)

    settings.addTrackFilter(filter_T1)
    settings.addTrackFilter(filter_MTD)

    # Instantiate trackmate
    trackmate = TrackMate(model, settings)

    # Execute all

    ok = trackmate.checkInput()
    if not ok:
        IJ.showMessage("No spots found... Adjust detection parameter.\n" +
                       str(trackmate.getErrorMessage()))
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        IJ.showMessage("No spots found... Adjust detection parameter.\n" +
                       str(trackmate.getErrorMessage()))
        sys.exit(str(trackmate.getErrorMessage()))

    filename = os.path.splitext(filename)[0]  #filename without extension
    outFile = File(os.path.join(path, filename + "_Tracks.xml"))
    ExportTracksToXML.export(model, settings, outFile)
    #imp.close()

    tm_writer = TmXmlWriter(File(os.path.join(path, filename + "_TM.xml")))
    tm_writer.appendModel(model)
    tm_writer.appendSettings(settings)
    tm_writer.writeToFile()

    if not batch_mode:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()
        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))
    model.getLogger().log('Filename' + file1 + "TEST:" +
                          str(file1.endswith("*R3D_PRJ.dv")))
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 5.0,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': 20.0,
        'DO_MEDIAN_FILTERING': False,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('STANDARD_DEVIATION', 530.6, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = True
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 15.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 15.0
    settings.trackerSettings['SPLITTING_MAX_DISTANCE'] = 10.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 2

    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': spot_radius * resolution,
        'THRESHOLD': 150.,
        'DO_MEDIAN_FILTERING': True,
    }

    # Configure spot filters
    filter0 = FeatureFilter('MEAN_INTENSITY', spot_mean_intensity, True)
    filter1 = FeatureFilter('STANDARD_DEVIATION', spot_standard_deviation,
                            True)
    settings.addSpotFilter(filter0)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to disallow merges and fusions
    # See https://javadoc.scijava.org/Fiji/index.html?constant-values.html
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = True
    settings.trackerSettings['MAX_FRAME_GAP'] = max_frame_gap
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = linking_max_distance
    settings.trackerSettings['MERGING_MAX_DISTANCE'] = linking_max_distance
    settings.trackerSettings['SPLITTING_MAX_DISTANCE'] = linking_max_distance
예제 #16
0
def magic(file):
    # We have to feed a logger to the reader.
    logger = Logger.IJ_LOGGER

    #-------------------
    # Instantiate reader
    #-------------------

    reader = TmXmlReader(File(file))
    if not reader.isReadingOk():
        sys.exit(reader.getErrorMessage())
    #-----------------
    # Get a full model
    #-----------------

    # This will return a fully working model, with everything
    # stored in the file. Missing fields (e.g. tracks) will be
    # null or None in python
    model = reader.getModel()
    # model is a fiji.plugin.trackmate.Model

    #model = Model()
    #model.setSpots(model2.getSpots(), True)

    #----------------
    # Display results
    #----------------

    # We can now plainly display the model. It will be shown on an
    # empty image with default magnification.
    sm = SelectionModel(model)
    #displayer = HyperStackDisplayer(model, sm)
    #displayer.render()

    #---------------------------------------------
    # Get only part of the data stored in the file
    #---------------------------------------------

    # You might want to access only separate parts of the
    # model.

    spots = model.getSpots()
    # spots is a fiji.plugin.trackmate.SpotCollection

    logger.log(str(spots))

    # If you want to get the tracks, it is a bit trickier.
    # Internally, the tracks are stored as a huge mathematical
    # simple graph, which is what you retrieve from the file.
    # There are methods to rebuild the actual tracks, taking
    # into account for everything, but frankly, if you want to
    # do that it is simpler to go through the model:

    #---------------------------------------
    # Building a settings object from a file
    #---------------------------------------

    # Reading the Settings object is actually currently complicated. The
    # reader wants to initialize properly everything you saved in the file,
    # including the spot, edge, track analyzers, the filters, the detector,
    # the tracker, etc...
    # It can do that, but you must provide the reader with providers, that
    # are able to instantiate the correct TrackMate Java classes from
    # the XML data.

    # We start by creating an empty settings object
    settings = Settings()

    # Then we create all the providers, and point them to the target model:
    detectorProvider        = DetectorProvider()
    trackerProvider         = TrackerProvider()
    spotAnalyzerProvider    = SpotAnalyzerProvider()
    edgeAnalyzerProvider    = EdgeAnalyzerProvider()
    trackAnalyzerProvider   = TrackAnalyzerProvider()

    # Ouf! now we can flesh out our settings object:
    reader.readSettings(settings, detectorProvider, trackerProvider, spotAnalyzerProvider, edgeAnalyzerProvider, trackAnalyzerProvider)
    settings.detectorFactory = ManualDetectorFactory()


    # Configure tracker - We want to allow merges and fusions
    settings.initialSpotFilterValue = 0
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 40.0
    settings.trackerSettings['ALLOW_GAP_CLOSING'] = True
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 30.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 4

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackBranchingAnalyzer())
    settings.addTrackAnalyzer(TrackIndexAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
    settings.addTrackAnalyzer(LinearTrackDescriptor())
    # Configure track filters - We want to get rid of the two immobile spots at
    # the bottom right of the image. Track displacement must be above 10 pixels.

    filter2 = FeatureFilter('NUMBER_SPOTS', 31, True)
    settings.addTrackFilter(filter2)
    #filter3 = FeatureFilter('NUMBER_GAPS', 2, False)
    #settings.addTrackFilter(filter3)
    filter4 = FeatureFilter('NUMBER_SPLITS', 0.5, False)
    settings.addTrackFilter(filter4)


    settings.addEdgeAnalyzer(EdgeTargetAnalyzer())
    settings.addEdgeAnalyzer(EdgeTimeLocationAnalyzer())
    settings.addEdgeAnalyzer(EdgeVelocityAnalyzer())
    settings.addEdgeAnalyzer(LinearTrackEdgeStatistics())

    #-------------------
    # Instantiate plugin
    #-------------------
    logger.log(str('\n\nSETTINGS:'))
    logger.log(unicode(settings))
    print("tracking")
    spots = model.getSpots()
    # spots is a fiji.plugin.trackmate.SpotCollection

    logger.log(str(spots))
    logger.log(str(spots.keySet()))


    # The settings object is also instantiated with the target image.
    # Note that the XML file only stores a link to the image.
    # If the link is not valid, the image will not be found.
    #imp = settings.imp
    #imp.show()

    # With this, we can overlay the model and the source image:

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    trackmate.execInitialSpotFiltering()
    trackmate.execSpotFiltering(True)
    trackmate.execTracking()
    trackmate.computeTrackFeatures(True)
    trackmate.execTrackFiltering(True)
    trackmate.computeEdgeFeatures(True)

    outfile = TmXmlWriter(File(str(file[:-4] + ".trackmate.xml")))
    outfile.appendSettings(settings)
    outfile.appendModel(model)
    outfile.writeToFile()

    ISBIChallengeExporter.exportToFile(model, settings, File(str(file[:-4] + ".ISBI.xml")))
def track_single_batch(path, filename):
    # Get currently selected image
    imp = WindowManager.getCurrentImage()
    # imp = IJ.openImage('https://fiji.sc/samples/FakeTracks.tif')
    imp.show()

    #----------------------------
    # Create the model object now
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    #settings.detectorFactory = LogDetectorFactory()
    settings.detectorFactory = BlockLogDetectorFactory()
    print
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 7.5,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': 0.25,
        'DO_MEDIAN_FILTERING': False,
        'NSPLIT': 3,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 0.1, True)  # in higher SNR;
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    #settings.trackerFactory = LAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = True
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 15.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 15.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 5

    # feature

    spotAnalyzerProvider = SpotAnalyzerProvider()
    for key in spotAnalyzerProvider.getKeys():
        print(key)
        settings.addSpotAnalyzerFactory(spotAnalyzerProvider.getFactory(key))

    edgeAnalyzerProvider = EdgeAnalyzerProvider()
    for key in edgeAnalyzerProvider.getKeys():
        print(key)
        settings.addEdgeAnalyzer(edgeAnalyzerProvider.getFactory(key))

    trackAnalyzerProvider = TrackAnalyzerProvider()
    for key in trackAnalyzerProvider.getKeys():
        print(key)
        settings.addTrackAnalyzer(trackAnalyzerProvider.getFactory(key))

    #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 3, True)
    #settings.addTrackFilter(filter2)

    # processing
    trackmate = TrackMate(model, settings)
    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    try:
        ok = trackmate.process()
    except:
        IJ.log("Nothing detected")
    else:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()

        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))

    save_path = os.path.join(path, 'result')
    if not os.path.exists(save_path):
        os.mkdir(save_path, 0755)
    outFile = File(save_path, filename)
    ExportTracksToXML.export(model, settings, outFile)
    imp.close()
예제 #18
0
settings.trackerSettings['LINKING_MAX_DISTANCE'] = 15.0
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 15.0
settings.trackerSettings['MAX_FRAME_GAP'] = 7

# Add the analyzers for some spot features.
# You need to configure TrackMate with analyzers that will generate
# the data you need.
# Here we just add two analyzers for spot, one that computes generic
# pixel intensity statistics (mean, max, etc...) and one that computes
# an estimate of each spot's SNR.
# The trick here is that the second one requires the first one to be in
# place. Be aware of this kind of gotchas, and read the docs.
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

filter2 = FeatureFilter('QUALITY', 0.0, True)
filter3 = FeatureFilter('POSITION_X', 1, True)
filter4 = FeatureFilter('POSITION_X', 128, False)
filter5 = FeatureFilter('POSITION_Y', 1, True)
filter6 = FeatureFilter('POSITION_Y', 128, False)
settings.addSpotFilter(filter2)
settings.addSpotFilter(filter4)
settings.addSpotFilter(filter5)
settings.addSpotFilter(filter6)

#filter3 = FeatureFilter('MEDIAN_INTENSITY', 300.0, False)
#settings.addSpotFilter(filter3)
#filter4 = FeatureFilter('SNR', 0.0, True)
#settings.addSpotFilter(filter4)

# Add an analyzer for some track features, such as the track mean speed.
예제 #19
0
settings = Settings()
settings.setFrom(imp)

# Configure detector - We use the Strings for the keys
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = {
    'DO_SUBPIXEL_LOCALIZATION': True,
    'RADIUS': 2.5,
    'TARGET_CHANNEL': 1,
    'THRESHOLD': 0.,
    'DO_MEDIAN_FILTERING': False,
}

# Configure spot filters - Classical filter on quality
filter = FeatureFilter('QUALITY', 30, True)
settings.addSpotFilter(filter)

# Configure tracker - We want to allow merges and fusions
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
)  # almost good enough
settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
settings.trackerSettings['ALLOW_TRACK_MERGING'] = True

# Configure track analyzers - Later on we want to filter out tracks
# based on their displacement, so we need to state that we want
# track displacement to be calculated. By default, out of the GUI,
# not features are calculated.

# The displacement feature is provided by the TrackDurationAnalyzer.
예제 #20
0
    gap_closing_max_distance
}
settings.trackerSettings['MAX_FRAME_GAP'] = {max_frame_gap}

# Add the analyzers for some spot features.
# You need to configure TrackMate with analyzers that will generate
# the data you need.
# Here we just add two analyzers for spot, one that computes generic
# pixel intensity statistics (mean, max, etc...) and one that computes
# an estimate of each spot's SNR.
# The trick here is that the second one requires the first one to be in
# place. Be aware of this kind of gotchas, and read the docs.
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

filter2 = FeatureFilter('QUALITY', {quality}, True)
filter3 = FeatureFilter('POSITION_X', 1, True)
filter4 = FeatureFilter('POSITION_X', {x}, False)
filter5 = FeatureFilter('POSITION_Y', {ylo}, True)
filter6 = FeatureFilter('POSITION_Y', {y}, False)
settings.addSpotFilter(filter2)
settings.addSpotFilter(filter4)
settings.addSpotFilter(filter5)
settings.addSpotFilter(filter6)

#filter3 = FeatureFilter('MEDIAN_INTENSITY', {median_intensity}, False)
#settings.addSpotFilter(filter3)
#filter4 = FeatureFilter('SNR', {snr}, True)
#settings.addSpotFilter(filter4)

# Add an analyzer for some track features, such as the track mean speed.
예제 #21
0
def process(srcDir, dstDir, currentDir, fileName, keepDirectories):
    print "Processing:"

    # Opening the image
    print "Open image file", fileName
    imp = IJ.openImage(os.path.join(currentDir, fileName))

    #Here we make sure the calibration are correct
    units = "pixel"
    TimeUnit = "unit"

    newCal = Calibration()
    newCal.pixelWidth = 1
    newCal.pixelHeight = 1
    newCal.frameInterval = 1

    newCal.setXUnit(units)
    newCal.setYUnit(units)
    newCal.setTimeUnit(TimeUnit)
    imp.setCalibration(newCal)
    cal = imp.getCalibration()

    dims = imp.getDimensions()  # default order: XYCZT

    if (dims[4] == 1):
        imp.setDimensions(1, 1, dims[3])

# Start the tracking

    model = Model()

    #Read the image calibration
    model.setPhysicalUnits(cal.getUnit(), cal.getTimeUnit())

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = DownsampleLogDetectorFactory()
    settings.detectorSettings = {
        DetectorKeys.KEY_RADIUS: 2.,
        DetectorKeys.KEY_DOWNSAMPLE_FACTOR: 2,
        DetectorKeys.KEY_THRESHOLD: 1.,
    }

    print(settings.detectorSettings)

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 0, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = LINKING_MAX_DISTANCE
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = ALLOW_TRACK_SPLITTING
    settings.trackerSettings['SPLITTING_MAX_DISTANCE'] = SPLITTING_MAX_DISTANCE
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = ALLOW_TRACK_MERGING
    settings.trackerSettings['MERGING_MAX_DISTANCE'] = MERGING_MAX_DISTANCE
    settings.trackerSettings[
        'GAP_CLOSING_MAX_DISTANCE'] = GAP_CLOSING_MAX_DISTANCE
    settings.trackerSettings['MAX_FRAME_GAP'] = MAX_FRAME_GAP

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

    filter2 = FeatureFilter('TRACK_DISPLACEMENT', 10, True)
    settings.addTrackFilter(filter2)

    #-------------------
    # Instantiate plugin
    #-------------------
    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

#----------------
# Display results
#----------------
    if showtracks:
        model.getLogger().log('Found ' +
                              str(model.getTrackModel().nTracks(True)) +
                              ' tracks.')
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()


# The feature model, that stores edge and track features.
    fm = model.getFeatureModel()

    with open(dstDir + fileName + 'tracks_properties.csv', "w") as file:
        writer1 = csv.writer(file)
        writer1.writerow([
            "track #", "TRACK_MEAN_SPEED (micrometer.secs)",
            "TRACK_MAX_SPEED (micrometer.secs)", "NUMBER_SPLITS",
            "TRACK_DURATION (secs)", "TRACK_DISPLACEMENT (micrometer)"
        ])

        with open(dstDir + fileName + 'spots_properties.csv',
                  "w") as trackfile:
            writer2 = csv.writer(trackfile)
            #writer2.writerow(["spot ID","POSITION_X","POSITION_Y","Track ID", "FRAME"])
            writer2.writerow(
                ["Tracking ID", "Timepoint", "Time (secs)", "X pos", "Y pos"])

            for id in model.getTrackModel().trackIDs(True):

                # Fetch the track feature from the feature model.
                v = (fm.getTrackFeature(id, 'TRACK_MEAN_SPEED') *
                     Pixel_calibration) / Time_interval
                ms = (fm.getTrackFeature(id, 'TRACK_MAX_SPEED') *
                      Pixel_calibration) / Time_interval
                s = fm.getTrackFeature(id, 'NUMBER_SPLITS')
                d = fm.getTrackFeature(id, 'TRACK_DURATION') * Time_interval
                e = fm.getTrackFeature(
                    id, 'TRACK_DISPLACEMENT') * Pixel_calibration
                model.getLogger().log('')
                model.getLogger().log('Track ' + str(id) +
                                      ': mean velocity = ' + str(v) + ' ' +
                                      model.getSpaceUnits() + '/' +
                                      model.getTimeUnits())

                track = model.getTrackModel().trackSpots(id)
                writer1.writerow(
                    [str(id), str(v),
                     str(ms), str(s),
                     str(d), str(e)])

                for spot in track:
                    sid = spot.ID()
                    x = spot.getFeature('POSITION_X')
                    y = spot.getFeature('POSITION_Y')
                    z = spot.getFeature('TRACK_ID')
                    t = spot.getFeature('FRAME')
                    time = int(t) * int(Time_interval)
                    writer2.writerow(
                        [str(id), str(t),
                         str(time), str(x),
                         str(y)])
예제 #22
0
def create_trackmate( imp, results_table ):
	"""
	Creates a TrackMate instance configured to operated on the specified
	ImagePlus imp with cell analysis stored in the specified ResultsTable
	results_table.
	"""

	cal = imp.getCalibration()

	# TrackMate.

	# Model.
	model = Model()
	model.setLogger( Logger.IJ_LOGGER )
	model.setPhysicalUnits( cal.getUnit(), cal.getTimeUnit() )

	# Settings.
	settings = Settings()
	settings.setFrom( imp )

	# Create the TrackMate instance.
	trackmate = TrackMate( model, settings )

	# Add ALL the feature analyzers known to TrackMate, via
	# providers.
	# They offer automatic analyzer detection, so all the
	# available feature analyzers will be added.
	# Some won't make sense on the binary image (e.g. contrast)
	# but nevermind.

	spotAnalyzerProvider = SpotAnalyzerProvider()
	for key in spotAnalyzerProvider.getKeys():
		print( key )
		settings.addSpotAnalyzerFactory( spotAnalyzerProvider.getFactory( key ) )

	edgeAnalyzerProvider = EdgeAnalyzerProvider()
	for  key in edgeAnalyzerProvider.getKeys():
		print( key )
		settings.addEdgeAnalyzer( edgeAnalyzerProvider.getFactory( key ) )

	trackAnalyzerProvider = TrackAnalyzerProvider()
	for key in trackAnalyzerProvider.getKeys():
		print( key )
		settings.addTrackAnalyzer( trackAnalyzerProvider.getFactory( key ) )

	trackmate.getModel().getLogger().log( settings.toStringFeatureAnalyzersInfo() )
	trackmate.computeSpotFeatures( True )
	trackmate.computeEdgeFeatures( True )
	trackmate.computeTrackFeatures( True )

	# Skip detection and get spots from results table.
	spots = spots_from_results_table( results_table, cal.frameInterval )
	model.setSpots( spots, False )

	# Configure detector. We put nothing here, since we already have the spots
	# from previous step.
	settings.detectorFactory = ManualDetectorFactory()
	settings.detectorSettings = {}
	settings.detectorSettings[ 'RADIUS' ] = 1.

	# Configure tracker
	settings.trackerFactory = SparseLAPTrackerFactory()
	settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
	settings.trackerSettings[ 'LINKING_MAX_DISTANCE' ] 		= 10.0
	settings.trackerSettings[ 'GAP_CLOSING_MAX_DISTANCE' ]	= 15.0
	settings.trackerSettings[ 'MAX_FRAME_GAP' ]				= 3
	settings.trackerSettings[ 'ALLOW_TRACK_SPLITTING' ]		= True
	settings.trackerSettings[ 'SPLITTING_MAX_DISTANCE' ]	= 7.0

	settings.trackerSettings

	settings.initialSpotFilterValue = -1.

	### print(model.getFeatureModel().getTrackFeatureNames())
	# TRACK_START: Track start,
	# TRACK_INDEX: Track index,
	# NUMBER_MERGES: Number of merge events,
	# TRACK_STD_SPEED: Velocity standard deviation,
	# TRACK_ID: Track ID,
	# TRACK_MEDIAN_QUALITY: Median quality,
	# TRACK_STD_QUALITY: Quality standard deviation,
	# TRACK_X_LOCATION: X Location (mean),
	# TRACK_MEDIAN_SPEED: Median velocity,
	# NUMBER_SPOTS: Number of spots in track,
	# TRACK_MIN_SPEED: Minimal velocity,
	# NUMBER_GAPS: Number of gaps,
	# TRACK_Z_LOCATION: Z Location (mean),
	# TRACK_STOP: Track stop,
	# TRACK_MEAN_SPEED: Mean velocity,
	# NUMBER_SPLITS: Number of split events,
	# TRACK_MAX_SPEED: Maximal velocity,
	# TRACK_Y_LOCATION: Y Location (mean),
	# TRACK_DISPLACEMENT: Track displacement,
	# NUMBER_COMPLEX: Complex points,
	# TRACK_MEAN_QUALITY: Mean quality,
	# TRACK_DURATION: Duration of track,
	# TRACK_MAX_QUALITY: Maximal quality,
	# LONGEST_GAP: Longest gap,
	# TRACK_MIN_QUALITY: Minimal quality

	settings.addTrackFilter(FeatureFilter('NUMBER_SPLITS', 0.9, True))

	return trackmate
    gap_closing_max_distance
}
settings.trackerSettings['MAX_FRAME_GAP'] = {max_frame_gap}

# Add the analyzers for some spot features.
# You need to configure TrackMate with analyzers that will generate
# the data you need.
# Here we just add two analyzers for spot, one that computes generic
# pixel intensity statistics (mean, max, etc...) and one that computes
# an estimate of each spot's SNR.
# The trick here is that the second one requires the first one to be in
# place. Be aware of this kind of gotchas, and read the docs.
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

filter2 = FeatureFilter('QUALITY', {quality}, True)
settings.addSpotFilter(filter2)
#filter3 = FeatureFilter('MEDIAN_INTENSITY', {median_intensity}, False)
#settings.addSpotFilter(filter3)
#filter4 = FeatureFilter('SNR', {snr}, True)
#settings.addSpotFilter(filter4)

# Add an analyzer for some track features, such as the track mean speed.
settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
settings.addTrackAnalyzer(TrackDurationAnalyzer())

#filter5 = FeatureFilter('TRACK_DISPLACEMENT', {track_displacement}, True)
#settings.addTrackFilter(filter5)

settings.initialSpotFilterValue = 0
예제 #24
0
def track(imp):

    from fiji.plugin.trackmate import Model
    from fiji.plugin.trackmate import Settings
    from fiji.plugin.trackmate import TrackMate
    from fiji.plugin.trackmate import SelectionModel
    from fiji.plugin.trackmate import Logger
    from fiji.plugin.trackmate.detection import LogDetectorFactory
    from fiji.plugin.trackmate.tracking.sparselap import SparseLAPTrackerFactory
    from fiji.plugin.trackmate.tracking import LAPUtils
    from ij import IJ
    import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as HyperStackDisplayer
    import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter
    import sys
    import fiji.plugin.trackmate.features.track.TrackDurationAnalyzer as TrackDurationAnalyzer

    # Get currently selected image
    #imp = WindowManager.getCurrentImage()
    #imp = IJ.openImage('http://fiji.sc/samples/FakeTracks.tif')
    #imp.show()

    #----------------------------
    # Create the model object now
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 3.0,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': 1.,
        'DO_MEDIAN_FILTERING': False,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 30, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = True

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())

    #-------------------
    # Instantiate plugin
    #-------------------

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    #----------------
    # Display results
    #----------------

    selectionModel = SelectionModel(model)
    displayer = HyperStackDisplayer(model, selectionModel, imp)
    displayer.render()
    displayer.refresh()

    # Echo results with the logger we set at start:
    #model.getLogger().log(str(model))

    fm = model.getFeatureModel()
    norm_x = []
    norm_y = []
    for id in model.getTrackModel().trackIDs(True):
        track = model.getTrackModel().trackSpots(id)
        for spot in track:
            t = spot.getFeature('FRAME')

            if (t == 0.0):
                min_x = spot.getFeature('POSITION_X')
                min_y = spot.getFeature('POSITION_Y')
        for spot in track:

            norm_x.append(spot.getFeature('POSITION_X') - min_x)
            norm_y.append(spot.getFeature('POSITION_Y') - min_y)

    max_x = abs(max(norm_x, key=abs))
    max_y = abs(max(norm_y, key=abs))

    return max_x, max_y
예제 #25
0
model.getLogger().log(stringOptimalQuality)

#3.
# Configure detector
settings.detectorFactory = DogDetectorFactory()
settings.detectorSettings = {
    'DO_SUBPIXEL_LOCALIZATION': True,
    'RADIUS': 0.350,
    'TARGET_CHANNEL': 1,
    'THRESHOLD': 0.0,
    'DO_MEDIAN_FILTERING': True,
}

#4.
# Configure spot filters
filter2 = FeatureFilter('QUALITY', optimalQuality, True)
settings.addSpotFilter(filter2)

# Configure tracker
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
settings.trackerSettings['LINKING_MAX_DISTANCE'] = 1.000
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 1.000
settings.trackerSettings['MAX_FRAME_GAP'] = 3
# Configure track analyzers
settings.addTrackAnalyzer(TrackDurationAnalyzer())
settings.addTrackAnalyzer(TrackBranchingAnalyzer())
# Configure track filters
filter3 = FeatureFilter('TRACK_DURATION', 100, True)
settings.addTrackFilter(filter3)
예제 #26
0
settings.trackerSettings['LINKING_MAX_DISTANCE'] = 10.0
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 10.0
settings.trackerSettings['MAX_FRAME_GAP'] = 3

# Add the analyzers for some spot features.
# You need to configure TrackMate with analyzers that will generate
# the data you need.
# Here we just add two analyzers for spot, one that computes generic
# pixel intensity statistics (mean, max, etc...) and one that computes
# an estimate of each spot's SNR.
# The trick here is that the second one requires the first one to be in
# place. Be aware of this kind of gotchas, and read the docs.
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

filter2 = FeatureFilter('QUALITY', 10, True)
settings.addSpotFilter(filter2)
filter3 = FeatureFilter('MEDIAN_INTENSITY', 10, True)
settings.addSpotFilter(filter3)
filter4 = FeatureFilter('SNR', 0.5, True)
settings.addSpotFilter(filter4)

# Add an analyzer for some track features, such as the track mean speed.
settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
settings.addTrackAnalyzer(TrackDurationAnalyzer())

filter5 = FeatureFilter('TRACK_DISPLACEMENT', 5, True)
settings.addTrackFilter(filter5)

settings.initialSpotFilterValue = 1
예제 #27
0
파일: fiji.py 프로젝트: jnowak90/CytoSeg
    settings = Settings()
    settings.setFrom(imp)
    settings.detectorFactory = DogDetectorFactory()
    settings.detectorSettings[
        'DO_SUBPIXEL_LOCALIZATION'] = True  # do subpixel localization
    settings.detectorSettings['RADIUS'] = radius  # set blob radius
    settings.detectorSettings['TARGET_CHANNEL'] = 1  # set target channel
    settings.detectorSettings[
        'THRESHOLD'] = 1.0  # set detection threshold to one to exclude region outside mask
    settings.detectorSettings[
        'DO_MEDIAN_FILTERING'] = True  # do median filtering
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotRadiusEstimatorFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
    settings.initialSpotFilterValue = quality
    settings.addSpotFilter(FeatureFilter('QUALITY', quality, True))
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    settings.addEdgeAnalyzer(EdgeTargetAnalyzer())
    settings.addEdgeAnalyzer(EdgeVelocityAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackIndexAnalyzer())
    settings.addTrackAnalyzer(TrackLocationAnalyzer())
    settings.trackerSettings[
        'LINKING_MAX_DISTANCE'] = distL  # set maximum linkage
    settings.trackerSettings[
        'GAP_CLOSING_MAX_DISTANCE'] = distF  # maximum gap-closing distance in pixels
    settings.trackerSettings[
        'MAX_FRAME_GAP'] = distG  # maximum frame gap number in pixels
예제 #28
0
    DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION: True,
    DetectorKeys.KEY_RADIUS: 4.3,
    DetectorKeys.KEY_TARGET_CHANNEL: 1,
    DetectorKeys.KEY_THRESHOLD: 3.,
    DetectorKeys.KEY_DO_MEDIAN_FILTERING: False,
}

logger.log(str('\n\nSETTINGS:'))
logger.log(str(settings))
"""
TODO Filter. Think about how and what to implement in the filter.
"""
# The displacement feature is provided by the TrackDurationAnalyzer.

settings.addTrackAnalyzer(TrackDurationAnalyzer())
filter2 = FeatureFilter('TRACK_DISPLACEMENT', 8, True)
settings.addTrackFilter(filter2)
filter2 = FeatureFilter('TRACK_DISPLACEMENT', 50, True)
settings.addTrackFilter(filter2)
filter2 = FeatureFilter('TRACK_DISPLACEMENT', 160, True)
settings.addTrackFilter(filter2)

#-------------------
# Instantiate plugin
#-------------------

trackmate = TrackMate(model, settings)

#--------
# Process
#--------
settings.trackerSettings['LINKING_MAX_DISTANCE'] = {linking_max_distance}
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE']={gap_closing_max_distance}
settings.trackerSettings['MAX_FRAME_GAP']= {max_frame_gap}

# Add the analyzers for some spot features.
# You need to configure TrackMate with analyzers that will generate
# the data you need.
# Here we just add two analyzers for spot, one that computes generic
# pixel intensity statistics (mean, max, etc...) and one that computes
# an estimate of each spot's SNR.
# The trick here is that the second one requires the first one to be in
# place. Be aware of this kind of gotchas, and read the docs.
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

filter2 = FeatureFilter('QUALITY', {quality}, True)
filter3 = FeatureFilter('POSITION_X', 1, True)
filter4 = FeatureFilter('POSITION_X', {xd}, False)
filter5 = FeatureFilter('POSITION_Y', {ylo}, True)
filter6 = FeatureFilter('POSITION_Y', {yd}, False)
settings.addSpotFilter(filter2)
settings.addSpotFilter(filter4)
settings.addSpotFilter(filter5)
settings.addSpotFilter(filter6)

#filter3 = FeatureFilter('MEDIAN_INTENSITY', {median_intensity}, False)
#settings.addSpotFilter(filter3)
#filter4 = FeatureFilter('SNR', {snr}, True)
#settings.addSpotFilter(filter4)