예제 #1
0
def getSpots(imp, channel, detector_type, radius, threshold, overlay,
             roi_type="large", roi_color=ColorRGB("blue")):
    """ Performs the detection, adding spots to the image overlay
    :imp:           The image (ImagePlus) being analyzed
    :channel:       The target channel
    :detector_type: A string describing the detector: "LoG" or "DoG"
    :radius:        Spot radius (NB: trackmate GUI accepts diameter)
    :threshold:     Quality cutoff value
    :overlay:       The image overlay to store spot (MultiPoint) ROIs
    :roi_type:      A string describing how spot ROIs should be displayed
    :returns:       The n. of detected spots
    """
    settings = Settings()
    settings.setFrom(imp)
    settings.detectorFactory = (LogDetectorFactory() if "LoG" in detector_type
                                else DogDetectorFactory())
    settings.detectorSettings = {
        DK.KEY_DO_SUBPIXEL_LOCALIZATION: False,
        DK.KEY_DO_MEDIAN_FILTERING: True,
        DK.KEY_TARGET_CHANNEL: channel,
        DK.KEY_RADIUS: radius,
        DK.KEY_THRESHOLD: threshold,
    }
    trackmate = TrackMate(settings)
    if not trackmate.execDetection():
        lservice.error(str(trackmate.getErrorMessage()))
        return 0
    model = trackmate.model
    spots = model.getSpots()
    count = spots.getNSpots(False)
    ch_id = "Spots Ch%d" % channel
    if count > 0:
        roi = None
        cal = imp.getCalibration()
        t_pos = imp.getT()
        if (t_pos > 1):
            lservice.warn("Only frame %d was considered..." % t_pos)
        for spot in spots.iterable(False):
            x = cal.getRawX(spot.getFeature(spot.POSITION_X))
            y = cal.getRawY(spot.getFeature(spot.POSITION_Y))
            z = spot.getFeature(spot.POSITION_Z)
            if z == 0 or not cal.pixelDepth or cal.pixelDepth == 0:
                z = 1
            else:
                z = int(z // cal.pixelDepth)
            imp.setPosition(channel, z, t_pos)
            if roi is None:
                roi = PointRoi(int(x), int(y), imp)
            else:
                roi.addPoint(imp, x, y)
        roi.setStrokeColor(colorRGBtoColor(roi_color))
        if "large" in roi_type:
            roi.setPointType(3)
            roi.setSize(4)
        else:
            roi.setPointType(2)
            roi.setSize(1)
        overlay.add(roi, ch_id)
    return count
예제 #2
0
#-------------------------
# Instantiate model object
#-------------------------

model = Model()
model.setPhysicalUnits(imp.getCalibration().getUnits(), imp.getCalibration().getTimeUnit())

# Set logger
model.setLogger(Logger.IJ_LOGGER)

#------------------------
# Prepare settings object
#------------------------

settings = Settings()
settings.setFrom(imp)

settings.tstart = 2
settings.tend = settings.tend - 5

print('min threshold: ' + str(imp.getProcessor().getMinThreshold()))

# Configure detector
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = {
    DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION : True,
    DetectorKeys.KEY_RADIUS : .30,
    DetectorKeys.KEY_TARGET_CHANNEL : 1,
    DetectorKeys.KEY_THRESHOLD : 50.,
    DetectorKeys.KEY_DO_MEDIAN_FILTERING : False,
예제 #3
0
import fiji.plugin.trackmate.detection.LogDetectorFactory
 
import fiji.plugin.trackmate.tracking.LAPUtils
import fiji.plugin.trackmate.tracking.sparselap.SparseLAPTrackerFactory
 
import fiji.plugin.trackmate.action.ExportTracksToXML
 
 
# Swap Z and T dimensions if T=1
dims = imp.getDimensions() # default order: XYCZT
if (dims[4] == 1) {
    imp.setDimensions( dims[2,4,3] )
}
 
# Setup settings for TrackMate
settings = new Settings()
settings.setFrom(imp)
settings.dt = 0.05
 
settings.detectorFactory = new LogDetectorFactory()
settings.detectorSettings = settings.detectorFactory.getDefaultSettings()
println settings.detectorSettings
 
settings.detectorSettings['RADIUS'] = radius
settings.detectorSettings['THRESHOLD'] = threshold
println settings.detectorSettings
 
settings.trackerFactory = new SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
 
예제 #4
0
def magic(file):
    # We have to feed a logger to the reader.
    logger = Logger.IJ_LOGGER

    #-------------------
    # Instantiate reader
    #-------------------

    reader = TmXmlReader(File(file))
    if not reader.isReadingOk():
        sys.exit(reader.getErrorMessage())
    #-----------------
    # Get a full model
    #-----------------

    # This will return a fully working model, with everything
    # stored in the file. Missing fields (e.g. tracks) will be
    # null or None in python
    model = reader.getModel()
    # model is a fiji.plugin.trackmate.Model

    #model = Model()
    #model.setSpots(model2.getSpots(), True)

    #----------------
    # Display results
    #----------------

    # We can now plainly display the model. It will be shown on an
    # empty image with default magnification.
    sm = SelectionModel(model)
    #displayer = HyperStackDisplayer(model, sm)
    #displayer.render()

    #---------------------------------------------
    # Get only part of the data stored in the file
    #---------------------------------------------

    # You might want to access only separate parts of the
    # model.

    spots = model.getSpots()
    # spots is a fiji.plugin.trackmate.SpotCollection

    logger.log(str(spots))

    # If you want to get the tracks, it is a bit trickier.
    # Internally, the tracks are stored as a huge mathematical
    # simple graph, which is what you retrieve from the file.
    # There are methods to rebuild the actual tracks, taking
    # into account for everything, but frankly, if you want to
    # do that it is simpler to go through the model:

    #---------------------------------------
    # Building a settings object from a file
    #---------------------------------------

    # Reading the Settings object is actually currently complicated. The
    # reader wants to initialize properly everything you saved in the file,
    # including the spot, edge, track analyzers, the filters, the detector,
    # the tracker, etc...
    # It can do that, but you must provide the reader with providers, that
    # are able to instantiate the correct TrackMate Java classes from
    # the XML data.

    # We start by creating an empty settings object
    settings = Settings()

    # Then we create all the providers, and point them to the target model:
    detectorProvider        = DetectorProvider()
    trackerProvider         = TrackerProvider()
    spotAnalyzerProvider    = SpotAnalyzerProvider()
    edgeAnalyzerProvider    = EdgeAnalyzerProvider()
    trackAnalyzerProvider   = TrackAnalyzerProvider()

    # Ouf! now we can flesh out our settings object:
    reader.readSettings(settings, detectorProvider, trackerProvider, spotAnalyzerProvider, edgeAnalyzerProvider, trackAnalyzerProvider)
    settings.detectorFactory = ManualDetectorFactory()


    # Configure tracker - We want to allow merges and fusions
    settings.initialSpotFilterValue = 0
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 40.0
    settings.trackerSettings['ALLOW_GAP_CLOSING'] = True
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 30.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 4

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackBranchingAnalyzer())
    settings.addTrackAnalyzer(TrackIndexAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())
    settings.addTrackAnalyzer(LinearTrackDescriptor())
    # Configure track filters - We want to get rid of the two immobile spots at
    # the bottom right of the image. Track displacement must be above 10 pixels.

    filter2 = FeatureFilter('NUMBER_SPOTS', 31, True)
    settings.addTrackFilter(filter2)
    #filter3 = FeatureFilter('NUMBER_GAPS', 2, False)
    #settings.addTrackFilter(filter3)
    filter4 = FeatureFilter('NUMBER_SPLITS', 0.5, False)
    settings.addTrackFilter(filter4)


    settings.addEdgeAnalyzer(EdgeTargetAnalyzer())
    settings.addEdgeAnalyzer(EdgeTimeLocationAnalyzer())
    settings.addEdgeAnalyzer(EdgeVelocityAnalyzer())
    settings.addEdgeAnalyzer(LinearTrackEdgeStatistics())

    #-------------------
    # Instantiate plugin
    #-------------------
    logger.log(str('\n\nSETTINGS:'))
    logger.log(unicode(settings))
    print("tracking")
    spots = model.getSpots()
    # spots is a fiji.plugin.trackmate.SpotCollection

    logger.log(str(spots))
    logger.log(str(spots.keySet()))


    # The settings object is also instantiated with the target image.
    # Note that the XML file only stores a link to the image.
    # If the link is not valid, the image will not be found.
    #imp = settings.imp
    #imp.show()

    # With this, we can overlay the model and the source image:

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    trackmate.execInitialSpotFiltering()
    trackmate.execSpotFiltering(True)
    trackmate.execTracking()
    trackmate.computeTrackFeatures(True)
    trackmate.execTrackFiltering(True)
    trackmate.computeEdgeFeatures(True)

    outfile = TmXmlWriter(File(str(file[:-4] + ".trackmate.xml")))
    outfile.appendSettings(settings)
    outfile.appendModel(model)
    outfile.writeToFile()

    ISBIChallengeExporter.exportToFile(model, settings, File(str(file[:-4] + ".ISBI.xml")))
예제 #5
0
#----------------------------

# Some of the parameters we configure below need to have
# a reference to the model at creation. So we create an
# empty model now.

model = Model()

# Send all messages to ImageJ log window.
model.setLogger(Logger.IJ_LOGGER)

#------------------------
# Prepare settings object
#------------------------

settings = Settings()
settings.setFrom(imp)

# Configure detector - We use the Strings for the keys
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = {
    'DO_SUBPIXEL_LOCALIZATION': True,
    'RADIUS': 2.5,
    'TARGET_CHANNEL': 1,
    'THRESHOLD': 0.,
    'DO_MEDIAN_FILTERING': False,
}

# Configure spot filters - Classical filter on quality
filter1 = FeatureFilter('QUALITY', 1, True)
settings.addSpotFilter(filter1)
예제 #6
0
파일: fiji.py 프로젝트: jnowak90/CytoSeg
    print 'track', 'load'
    imp = ij.IJ.openImage(path +
                          gg.replace('original', 'filter'))  # open Golgi image
    imp.show()
    lx, ly, lc, lz, lt = imp.getDimensions()  # get image dimensions
    lz, lt = min(lz, lt), max(lz, lt)
    ij.IJ.run(
        'Properties...',
        'channels=1 slices=' + str(lz) + ' frames=' + str(lt) +
        ' unit=pixel pixel_width=1.0000 pixel_height=1.0000 voxel_depth=' +
        str(depth)
    )  # set number of z-slices and frames and spacing between z-slices

    print 'track', 'setup'
    model = Model()  # set tracking model factories
    settings = Settings()
    settings.setFrom(imp)
    settings.detectorFactory = DogDetectorFactory()
    settings.detectorSettings[
        'DO_SUBPIXEL_LOCALIZATION'] = True  # do subpixel localization
    settings.detectorSettings['RADIUS'] = radius  # set blob radius
    settings.detectorSettings['TARGET_CHANNEL'] = 1  # set target channel
    settings.detectorSettings[
        'THRESHOLD'] = 1.0  # set detection threshold to one to exclude region outside mask
    settings.detectorSettings[
        'DO_MEDIAN_FILTERING'] = True  # do median filtering
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotRadiusEstimatorFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
    settings.initialSpotFilterValue = quality
    settings.addSpotFilter(FeatureFilter('QUALITY', quality, True))
예제 #7
0
imp.show()

#----------------------------
# Create the model object now
#----------------------------

model = Model()

# Send all messages to ImageJ log window.
model.setLogger(Logger.IJ_LOGGER)

#------------------------
# Prepare settings object
#------------------------
   
settings = Settings()
settings.setFrom(imp)
   
# Configure detector - We use the Strings for the keys
settings.detectorFactory = DownsampleLogDetectorFactory()
settings.detectorSettings = {
	DetectorKeys.KEY_RADIUS: 5.,
	DetectorKeys.KEY_DOWNSAMPLE_FACTOR: 4,
	DetectorKeys.KEY_THRESHOLD : 1.,
}
print(settings.detectorSettings)

# Config initial spot filters value
settings.initialSpotFilterValue = 3.5

# Configure spot filters - Classical filter on quality
예제 #8
0
  
  
#-------------------------
# Instantiate model object
#-------------------------
  
model = Model()
  
# Set logger
model.setLogger(Logger.IJ_LOGGER)
  
#------------------------
# Prepare settings object
#------------------------
     
settings = Settings()
settings.setFrom(imp)
     
# Configure detector
settings.detectorFactory = DogDetectorFactory()
settings.detectorSettings = {
    DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION : True,
    DetectorKeys.KEY_RADIUS : 2.5,
    DetectorKeys.KEY_TARGET_CHANNEL : 1,
    DetectorKeys.KEY_THRESHOLD : 5.,
    DetectorKeys.KEY_DO_MEDIAN_FILTERING : False,
} 
   
# Configure tracker
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
예제 #9
0
# ----------------------------

# Some of the parameters we configure below need to have
# a reference to the model at creation. So we create an
# empty model now.

model = Model()

# Send all messages to ImageJ log window.
model.setLogger(Logger.IJ_LOGGER)

# ------------------------
# Prepare settings object
# ------------------------

settings = Settings()
settings.setFrom(imp)

# Configure detector - We use the Strings for the keys
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = {
    'DO_SUBPIXEL_LOCALIZATION': True,
    'RADIUS': 2.5,
    'TARGET_CHANNEL': 1,
    'THRESHOLD': 0.,
    'DO_MEDIAN_FILTERING': False,
}

# Configure spot filters - Classical filter on quality
# filter1 = FeatureFilter('QUALITY', 30, True)
# settings.addSpotFilter(filter1)
예제 #10
0
def run_process(input_path, output_path):

    IJ.run("Image Sequence...", "open=[" + input_path + "] convert sort")
    imp = WindowManager.getCurrentImage()
    dims = imp.getDimensions()
    imp.setDimensions(dims[2], dims[4], dims[3])
    dims = imp.getDimensions()
    ImageConverter(imp).convertToGray8()

    model = Model()
    model.setLogger(Logger.IJ_LOGGER)

    settings = Settings()
    settings.setFrom(imp)

    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': float(11.0),
        'THRESHOLD': float(0.0),
        'DO_MEDIAN_FILTERING': True
    }

    # Configure spot filters - Classical filter on quality
    # filter1 = FeatureFilter('QUALITY', 30, True)
    # settings.addSpotFilter(filter1)

    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  #this sets tens of madatory settings
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 15.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 15.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 2
    #	print(LAPUtils.getDefaultLAPSettingsMap())

    #
    #	settings.trackerFactory = SimpleLAPTrackerFactory()
    ##	settings.trackerSettings = LAPUtils.SimpleLAPTrackerFactory() #this sets tens of madatory settings
    #	settings.trackerSettings['LINKING_MAX_DISTANCE'] = 15.0
    #	settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE']=15.0
    #	settings.trackerSettings['MAX_FRAME_GAP']= 2
    #	settings.trackerSettings['ALLOW_GAP_CLOSING']= True
    #	settings.trackerSettings['ALLOW_TRACK_SPLITTING']= False
    #	settings.trackerSettings['ALLOW_TRACK_MERGING']= False
    #	settings.trackerSettings['SPLITTING_MAX_DISTANCE']= 1000.0
    #	settings.trackerSettings['MERGING_MAX_DISTANCE']= 1000.0
    #	settings.trackerSettings['ALTERNATIVE_LINKING_COST_FACTOR']= 1000.0
    #	# ?
    #	settings.trackerSettings['CUTOFF_PERCENTILE']= 1000.0
    #	settings.trackerSettings['BLOCKING_VALUE']= 1000.0
    #
    #	filter2 = FeatureFilter('NUMBER_OF_SPOTS_IN_TRACK', 6.86, True)
    #	settings.addTrackFilter(filter2)

    trackmate = TrackMate(model, settings)

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
        raise Exception("trackmate: checkInput failed")

    # if ok:
    # 	print("Input ok")

    ok = trackmate.process()
    if not ok:
        raise Exception("trackmate: process failed")

    # if ok:
    # 	print("Process ok")
    #----------------
    # Display results
    #----------------

    model.getLogger().log('Found ' + str(model.getTrackModel().nTracks(True)) +
                          ' tracks.')

    selectionModel = SelectionModel(model)

    displayer = HyperStackDisplayer(model, selectionModel, imp)

    #	displayer.render()

    # The feature model, that stores edge and track features.
    fm = model.getFeatureModel()
    # print(fm)
    labels_row = [
        'id', 'spot_id', 'x', 'y', 'frame', 'quality', 'type', 'length'
    ]
    #'qualitiy','visability', 'track_length']
    #rows = []
    track_ids = model.getTrackModel().trackIDs(True)
    with open(output_path, 'w') as file:
        writer = csv.writer(file)
        writer.writerow(labels_row)
        for id in track_ids:
            # Fetch the track feature from the feature model.
            #			model.getLogger().log('')
            #			model.getLogger().log('Track ' + str(id) + ': mean velocity = ' + str(v) + ' ' + model.getSpaceUnits() + '/' + model.getTimeUnits())
            track = model.getTrackModel().trackSpots(id)
            num_spots = track.size()
            for spot in track:
                #				print(spot.getFeatures())
                row = []
                row.append(id)
                sid = spot.ID()
                row.append(sid)
                # Fetch spot features directly from spot.
                x = spot.getFeature('POSITION_X')
                row.append(x)
                y = spot.getFeature('POSITION_Y')
                row.append(y)
                t = spot.getFeature('FRAME')
                row.append(int(t))
                #			print("x: {} y: {} t: {}".format(x, y, t))
                q = spot.getFeature('QUALITY')
                row.append(q)
                #				snr=spot.getFeature('SNR')
                #				row.append(snr)
                #				mean=spot.getFeature('MEAN_INTENSITY')
                #				row.append(mean)
                # visibility=spot.getFeature('VISIBILITY')
                #				print(visibility)
                #				break
                #				row.append(visability)
                #				model.getLogger().log('\tspot ID = ' + str(sid) + ': x='+str(x)+', y='+str(y)+', t='+str(t)+', q='+str(q) + ', snr='+str(snr) + ', mean = ' + str(mean))
                row.append(1)
                row.append(num_spots)
                writer.writerow(row)


#			rows.append(row)
        file.close()
        return IJ
예제 #11
0
def detection(imp, c):
    cal = imp.getCalibration()
    model = Model()
    settings = Settings()
    settings.setFrom(imp)
    # Configure detector - Manually determined as best
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 2.0,
        'TARGET_CHANNEL': c,
        'THRESHOLD': 20.0,
        'DO_MEDIAN_FILTERING': False,
    }
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    trackmate = TrackMate(model, settings)
    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
    try:
        ok = trackmate.process()
    except:
        IJ.log("Nothing detected")
        IJ.selectWindow('test')
        IJ.run('Close')
    else:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()
        # Get spots information
        spots = model.getSpots()
        spotIt = spots.iterator(0, False)
        # Loop through spots and save into files
        # Fetch spot features directly from spot
        sid = []
        x = []
        y = []
        q = []
        r = []
        spotID = 0
        for spot in spotIt:
            spotID = spotID + 1
            sid.append(spotID)
            x.append(spot.getFeature('POSITION_X'))
            y.append(spot.getFeature('POSITION_Y'))
            q.append(spot.getFeature('QUALITY'))
            r.append(spot.getFeature('RADIUS'))
        data = zip(sid, x, y, q, r)
        return data
def nucleus_detection(infile, nucleus_channel, stacksize, animation):
	# Detect nucleus with 3d log filters
    fullpath = infile
    infile = filename(infile)
    IJ.log("Start Segmentation " + str(infile))
    # First get Nb Stacks
    reader = ImageReader()
    omeMeta = MetadataTools.createOMEXMLMetadata()
    reader.setMetadataStore(omeMeta)
    reader.setId(fullpath)
    default_options = "stack_order=XYCZT color_mode=Composite view=Hyperstack specify_range c_begin=" + \
        str(nucleus_channel) + " c_end=" + str(nucleus_channel) + \
        " c_step=1 open=[" + fullpath + "]"
    NbStack = reader.getSizeZ()
    reader.close()
    output = re.sub('.ids', '.csv', infile)
    with open(os.path.join(folder5, output), 'wb') as outfile:
        DETECTwriter = csv.writer(outfile, delimiter=',')
        DETECTwriter.writerow(
            ['spotID', 'roundID', 'X', 'Y', 'Z', 'QUALITY', 'SNR', 'INTENSITY'])
    rounds = NbStack // stacksize
    spotID = 1
    for roundid in xrange(1, rounds + 2):
        # Process stacksize by stacksize otherwise crash because too many spots
        Zstart = (stacksize * roundid - stacksize + 1)
        Zend = (stacksize * roundid)
        if(Zend > NbStack):
            Zend = NbStack % stacksize + (roundid - 1) * stacksize
        IJ.log("Round:" + str(roundid) + ' Zstart=' + str(Zstart) +
               ' Zend=' + str(Zend) + ' out of ' + str(NbStack))
        IJ.run("Bio-Formats Importer", default_options + " z_begin=" +
               str(Zstart) + " z_end=" + str(Zend) + " z_step=1")
        imp = IJ.getImage()
        imp.show()
        cal = imp.getCalibration()
        model = Model()
        settings = Settings()
        settings.setFrom(imp)
        # Configure detector - Manually determined as best
        settings.detectorFactory = LogDetectorFactory()
        settings.detectorSettings = {
            'DO_SUBPIXEL_LOCALIZATION': True,
            'RADIUS': 5.5,
            'TARGET_CHANNEL': 1,
            'THRESHOLD': 50.0,
            'DO_MEDIAN_FILTERING': False,
        }
        filter1 = FeatureFilter('QUALITY', 1, True)
        settings.addSpotFilter(filter1)
        settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
        settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()

        trackmate = TrackMate(model, settings)
        ok = trackmate.checkInput()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))
        try:
            ok = trackmate.process()
        except:
            IJ.log("Nothing detected, Round:" + str(roundid) + ' Zstart=' +
                   str(Zstart) + ' Zend=' + str(Zend) + ' out of ' + str(NbStack))
            IJ.selectWindow(infile)
            IJ.run('Close')
            continue
        else:
            if animation:
                # For plotting purpose only
                imp.setPosition(1, 1, imp.getNFrames())
                imp.getProcessor().setMinAndMax(0, 4000)
                selectionModel = SelectionModel(model)
                displayer = HyperStackDisplayer(model, selectionModel, imp)
                displayer.render()
                displayer.refresh()
                for i in xrange(1, imp.getNSlices() + 1):
                    imp.setSlice(i)
                    time.sleep(0.05)
            IJ.selectWindow(infile)
            IJ.run('Close')
            spots = model.getSpots()
            spotIt = spots.iterator(0, False)
            sid = []
            sroundid = []
            x = []
            y = []
            z = []
            q = []
            snr = []
            intensity = []
            for spot in spotIt:
                sid.append(spotID)
                spotID = spotID + 1
                sroundid.append(roundid)
                x.append(spot.getFeature('POSITION_X'))
                y.append(spot.getFeature('POSITION_Y'))
                q.append(spot.getFeature('QUALITY'))
                snr.append(spot.getFeature('SNR'))
                intensity.append(spot.getFeature('MEAN_INTENSITY'))
                # Correct Z position
                correct_z = spot.getFeature(
                    'POSITION_Z') + (roundid - 1) * float(stacksize) * cal.pixelDepth
                z.append(correct_z)
            with open(os.path.join(folder5, output), 'ab') as outfile:
                DETECTwriter = csv.writer(outfile, delimiter=',')
                Sdata = zip(sid, sroundid, x, y, z, q, snr, intensity)
                for Srow in Sdata:
                    DETECTwriter.writerow(Srow)
예제 #13
0
def analyze(tempFile):
# Get currently selected image
#imp = WindowManager.getCurrentImage()
	imp = IJ.openImage(tempFile)
	imp.show()
	dims = imp.getDimensions();
	imp.setDimensions(dims[2], dims[4], dims[3]);
	#----------------------------
	# Create the model object now
	#----------------------------
	# Some of the parameters we configure below need to have
	# a reference to the model at creation. So we create an
	# empty model now.
	model = Model()
	# Send all messages to ImageJ log window.
	model.setLogger(Logger.IJ_LOGGER)
	#------------------------
	# Prepare settings object
	#------------------------
	settings = Settings()
	settings.setFrom(imp)
	print(settings.imageFileName)   
	# Configure detector - We use the Strings for the keys
	settings.detectorFactory = LogDetectorFactory()
	settings.detectorSettings = { 
    	'DO_SUBPIXEL_LOCALIZATION' : False,
    	'RADIUS' : 20.,
    	'TARGET_CHANNEL' : 1,
    	'THRESHOLD' : 0.95,
    	'DO_MEDIAN_FILTERING' : True,
	}  
	# Configure spot filters - Classical filter on quality
	#filter1 = FeatureFilter('QUALITY', 0.5, True)
	#settings.addSpotFilter(filter1)
	# Configure tracker - We want to allow merges and fusions
	settings.trackerFactory = SimpleSparseLAPTrackerFactory()
	settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap() #probably good enough
	#settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = False
	#settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
	settings.trackerSettings['LINKING_MAX_DISTANCE'] = 35.0
	settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE']= 60.0
	settings.trackerSettings['MAX_FRAME_GAP']= 2
	# Configure track analyzers - Later on we want to filter out tracks 
	# based on their displacement, so we need to state that we want 
	# track displacement to be calculated. By default, out of the GUI, 
	# not features are calculated.   
	# The displacement feature is provided by the TrackDurationAnalyzer.
	settings.addTrackAnalyzer(TrackDurationAnalyzer())
	#-------------------
	# Instantiate plugin
	#-------------------
	trackmate = TrackMate(model, settings)
	ok = trackmate.process()
	if not ok:
		sys.exit(str(trackmate.getErrorMessage()))
	#----------------
	# Display results
	#----------------
	selectionModel = SelectionModel(model)
	displayer =  HyperStackDisplayer(model, selectionModel, imp)
	displayer.render()
	displayer.refresh()
	# Echo results with the logger we set at start:
	model.getLogger().log(str(model))
	print(str(settings))
	filename = os.path.splitext(settings.imageFileName)
	pathname = settings.imageFolder + "" + filename[0] + "tracks.xml"
	guicontroller = TrackMateGUIController(trackmate)
	newFile = File(pathname)
	ExportTracksToXML(guicontroller).export(model, settings, newFile)
	actionObject = CaptureOverlayAction()
	actionObject.execute(trackmate)
	imp = WindowManager.getCurrentImage()
	fileSaver = FileSaver(imp)
	fileSaver.saveAsTiffStack(settings.imageFolder + "" + filename[0] + "overlay.tif")
	WindowManager.closeAllWindows()
	guicontroller.quit()
	selectionModel.clearSelection();
	model.clearTracks(1)
예제 #14
0
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = DogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 0.6,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': 50.0,
        'DO_MEDIAN_FILTERING': False,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 50, True)
    settings.addSpotFilter(filter1)
예제 #15
0
def processImages(cfg, wellName, wellPath, images):
    firstImage = IJ.openImage(images[0][0][0][0])
    imgWidth = firstImage.getWidth()
    imgHeight = firstImage.getHeight()

    for c in range(0, cfg.getValue(ELMConfig.numChannels)):
        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        if cfg.getValue(ELMConfig.chanLabel)[c] in cfg.getValue(
                ELMConfig.chansToSkip):
            continue
        imColorSeq = ImageStack(imgWidth, imgHeight)
        imSeq = ImageStack(imgWidth, imgHeight)
        totalHist = []
        for z in range(0, cfg.getValue(ELMConfig.numZ)):
            for t in range(0, cfg.getValue(ELMConfig.numT)):

                currIP = IJ.openImage(images[c][z][t][0])
                imColorSeq.addSlice(currIP.duplicate().getProcessor())

                currIP = ELMImageUtils.getGrayScaleImage(
                    currIP, c, chanName, cfg)

                imSeq.addSlice(currIP.getProcessor())
                imgStats = currIP.getStatistics()
                currHist = imgStats.getHistogram()
                if not totalHist:
                    for i in range(len(currHist)):
                        totalHist.append(currHist[i])
                else:
                    for i in range(len(currHist)):
                        totalHist[i] += currHist[i]

        if cfg.hasValue(ELMConfig.thresholdFromWholeRange) and cfg.getValue(
                ELMConfig.thresholdFromWholeRange) == True:
            threshMethod = "Otsu"  # Default works very poorly for this data
            if cfg.hasValue(ELMConfig.thresholdMethod):
                threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
            thresholder = AutoThresholder()
            computedThresh = thresholder.getThreshold(threshMethod, totalHist)
            cfg.setValue(ELMConfig.imageThreshold, computedThresh)
            print("\tComputed threshold from total hist (" + threshMethod +
                  "): " + str(computedThresh))
            print()
        else:
            print("\tUsing threshold computed on individual images!")
            print()
            computedThresh = 0

        chanName = cfg.getValue(ELMConfig.chanLabel)[c]

        imp = ImagePlus()
        imp.setStack(imSeq)
        imp.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        imp.setTitle(wellName + ", channel " + str(c))

        impColor = ImagePlus()
        impColor.setStack(imColorSeq)
        impColor.setDimensions(1, 1, cfg.getValue(ELMConfig.numT))
        impColor.setTitle(wellName + ", channel " + str(c) + " (Color)")

        #----------------------------
        # Create the model object now
        #----------------------------

        # Some of the parameters we configure below need to have
        # a reference to the model at creation. So we create an
        # empty model now.

        model = Model()

        # Send all messages to ImageJ log window.
        model.setLogger(Logger.IJ_LOGGER)

        pa_features = [
            "Area", "PercentArea", "Mean", "StdDev", "Mode", "Min", "Max", "X",
            "Y", "XM", "YM", "Perim.", "BX", "BY", "Width", "Height", "Major",
            "Minor", "Angle", "Circ.", "Feret", "IntDen", "Median", "Skew",
            "Kurt", "RawIntDen", "FeretX", "FeretY", "FeretAngle", "MinFeret",
            "AR", "Round", "Solidity"
        ]

        featureNames = {}
        featureShortNames = {}
        featureDimensions = {}
        isInt = {}
        for feature in pa_features:
            featureNames[feature] = feature
            featureShortNames[feature] = feature
            featureDimensions[feature] = Dimension.STRING
            isInt[feature] = False

        model.getFeatureModel().declareSpotFeatures(pa_features, featureNames,
                                                    featureShortNames,
                                                    featureDimensions, isInt)

        #------------------------
        # Prepare settings object
        #------------------------

        settings = Settings()
        settings.setFrom(imp)

        dbgPath = os.path.join(wellPath, 'debugImages_' + chanName)
        if not os.path.exists(dbgPath):
            os.makedirs(dbgPath)

        if cfg.hasValue(ELMConfig.thresholdMethod):
            threshMethod = cfg.getValue(ELMConfig.thresholdMethod)
        else:
            threshMethod = "Default"

        # Configure detector - We use the Strings for the keys
        settings.detectorFactory = ThresholdDetectorFactory()
        settings.detectorSettings = {
            'THRESHOLD': computedThresh,
            'ABOVE': True,
            'DEBUG_MODE': True,
            'DEBUG_OUTPATH': dbgPath,
            'THRESHOLD_METHOD': threshMethod
        }

        #settings.detectorFactory = LocalThresholdDetectorFactory()
        #settings.detectorSettings = {
        #    'THRESHOLD' : computedThresh,
        #    'DEBUG_MODE' : True,
        #    'DEBUG_OUTPATH' : dbgPath
        #}

        # Configure spot filters - Classical filter on quality
        filter1 = FeatureFilter('QUALITY', 150, True)
        settings.addSpotFilter(filter1)

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
        )  # almost good enough

        # Linking
        settings.trackerSettings[TrackerKeys.KEY_LINKING_MAX_DISTANCE] = 220.0
        # in pixels

        linkFeaturePenalties = HashMap()
        linkFeaturePenalties['Area'] = 1.0
        linkFeaturePenalties['POSITION_X'] = 1.0
        linkFeaturePenalties['POSITION_Y'] = 1.0
        #linkFeaturePenalties['Circ.'] = 1.0
        #linkFeaturePenalties['Mean'] = 1.0

        settings.trackerSettings[
            TrackerKeys.KEY_LINKING_FEATURE_PENALTIES] = linkFeaturePenalties
        # Gap closing
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_GAP_CLOSING] = True
        settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_MAX_FRAME_GAP] = 8
        settings.trackerSettings[
            TrackerKeys.KEY_GAP_CLOSING_MAX_DISTANCE] = 120.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_GAP_CLOSING_FEATURE_PENALTIES));
        # Track splitting
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_SPLITTING] = False
        settings.trackerSettings[TrackerKeys.KEY_SPLITTING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_SPLITTING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_SPLITTING_FEATURE_PENALTIES));
        # Track merging
        settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_MERGING] = True
        settings.trackerSettings[TrackerKeys.KEY_MERGING_MAX_DISTANCE] = 45.0
        # in pixels
        #settings.trackerSettings[TrackerKeys.KEY_MERGING_FEATURE_PENALTIES] =  new HashMap<>(DEFAULT_MERGING_FEATURE_PENALTIES));
        # Others
        settings.trackerSettings[TrackerKeys.KEY_BLOCKING_VALUE] = float("inf")
        settings.trackerSettings[
            TrackerKeys.KEY_ALTERNATIVE_LINKING_COST_FACTOR] = 1.05
        settings.trackerSettings[TrackerKeys.KEY_CUTOFF_PERCENTILE] = 0.9

        # Configure track analyzers - Later on we want to filter out tracks
        # based on their displacement, so we need to state that we want
        # track displacement to be calculated. By default, out of the GUI,
        # no features are calculated.

        # The displacement feature is provided by the TrackDurationAnalyzer.
        settings.addTrackAnalyzer(TrackDurationAnalyzer())
        settings.addTrackAnalyzer(TrackBranchingAnalyzer())
        settings.addTrackAnalyzer(TrackIndexAnalyzer())
        settings.addTrackAnalyzer(TrackLocationAnalyzer())
        settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

        settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
        settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

        # Configure track filters - We want to get rid of the two immobile spots at
        # the bottom right of the image. Track displacement must be above 10 pixels.
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)
        #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True)
        #settings.addTrackFilter(filter2)

        #print("Spot feature analyzers: " + settings.toStringFeatureAnalyzersInfo())

        #-------------------
        # Instantiate plugin
        #-------------------

        trackmate = TrackMate(model, settings)
        trackmate.setNumThreads(1)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        print("Processing " + chanName + "...")
        ok = trackmate.process()
        if not ok:
            sys.exit(str(trackmate.getErrorMessage()))

        #----------------
        # Display results
        #----------------
        print("Rendering...")

        # Set spot names based on track IDs
        # This allows track IDs to be displayed in the rendered video
        for tId in model.getTrackModel().trackIDs(True):
            trackSpots = model.getTrackModel().trackSpots(tId)
            for spot in trackSpots:
                spot.setName(str(tId))

        # Determine sub-tracks within a track
        # Since tracks can merge, we want to keep track of which track a spot is
        # in prior to the merge
        spotToSubTrackMap = {}
        spotIt = model.getSpots().iterator(False)
        trackModel = model.getTrackModel()
        subTrackCount = {}
        while spotIt.hasNext():
            spot = spotIt.next()
            spotEdges = trackModel.edgesOf(spot)
            # Find merge points within a track: ignore spots with fewer than 2 edges
            if (len(spotEdges) < 2):
                continue

            # We have a merge if we have multiple incoming edges
            incomingEdges = 0
            edgeIt = spotEdges.iterator()
            ancestorSpots = []
            while edgeIt.hasNext():
                edge = edgeIt.next()
                src = trackModel.getEdgeSource(edge)
                dst = trackModel.getEdgeTarget(edge)
                if dst.ID() == spot.ID():
                    ancestorSpots.append(src)
                    incomingEdges += 1
            # Ignore non-merges
            if incomingEdges < 2:
                continue

            trackId = trackModel.trackIDOf(spot)
            if trackId in subTrackCount:
                subTrackId = subTrackCount[trackId]
            else:
                subTrackId = 1
            for ancestorSpot in ancestorSpots:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap,
                                       ancestorSpot, subTrackId, trackId,
                                       False)
                subTrackId += 1
            subTrackCount[trackId] = subTrackId

        # Spots after the last merge still need to be labeled
        for tId in trackModel.trackIDs(True):
            trackSpots = trackModel.trackSpots(tId)
            spotIt = trackSpots.iterator()
            lastSpot = None
            while spotIt.hasNext():
                spot = spotIt.next()
                outgoingEdges = 0
                spotEdges = trackModel.edgesOf(spot)
                edgeIt = spotEdges.iterator()
                while edgeIt.hasNext():
                    edge = edgeIt.next()
                    src = trackModel.getEdgeSource(edge)
                    dst = trackModel.getEdgeTarget(edge)
                    if src.ID() == spot.ID():
                        outgoingEdges += 1
                if outgoingEdges == 0 and len(spotEdges) > 0:
                    lastSpot = spot

            if tId in subTrackCount:
                subTrackId = subTrackCount[tId]
            else:
                subTrackId = 1
            if not lastSpot == None:
                labelSubTrackAncestors(trackModel, spotToSubTrackMap, lastSpot,
                                       subTrackId, tId, True)

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_spotToTrackMap.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write('Spot Id, Track Sub Id, Track Id, Frame \n')
        for spotId in spotToSubTrackMap:
            trackFile.write(
                str(spotId) + ', ' + ','.join(spotToSubTrackMap[spotId]) +
                '\n')
        trackFile.close()

        # Write Edge Set
        trackOut = os.path.join(wellPath, chanName + "_mergeEdgeSet.csv")
        trackFile = open(trackOut, 'w')
        trackFile.write('Track Id, Spot Id, Spot Id \n')
        edgeIt = trackModel.edgeSet().iterator()
        while edgeIt.hasNext():
            edge = edgeIt.next()
            src = trackModel.getEdgeSource(edge)
            dst = trackModel.getEdgeTarget(edge)
            trackId = trackModel.trackIDOf(edge)
            srcSubTrack = spotToSubTrackMap[src.ID()][0]
            dstSubTrack = spotToSubTrackMap[dst.ID()][0]
            if not srcSubTrack == dstSubTrack:
                trackFile.write(
                    str(trackId) + ', ' + str(src.ID()) + ', ' +
                    str(dst.ID()) + '\n')
        trackFile.close()

        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, impColor)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_COLORING,
            PerTrackFeatureColorGenerator(model,
                                          TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_SPOT_COLORING,
            SpotColorGeneratorPerTrackFeature(model,
                                              TrackIndexAnalyzer.TRACK_INDEX))
        displayer.setDisplaySettings(TrackMateModelView.KEY_DISPLAY_SPOT_NAMES,
                                     True)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_MODE,
            TrackMateModelView.TRACK_DISPLAY_MODE_LOCAL_BACKWARD_QUICK)
        displayer.setDisplaySettings(
            TrackMateModelView.KEY_TRACK_DISPLAY_DEPTH, 2)
        displayer.render()
        displayer.refresh()

        trackmate.getSettings().imp = impColor
        coa = CaptureOverlayAction(None)
        coa.execute(trackmate)

        WindowManager.setTempCurrentImage(coa.getCapture())
        IJ.saveAs('avi', os.path.join(wellPath, chanName + "_out.avi"))

        imp.close()
        impColor.close()
        displayer.clear()
        displayer.getImp().hide()
        displayer.getImp().close()
        coa.getCapture().hide()
        coa.getCapture().close()

        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))

        # The feature model, that stores edge and track features.
        fm = model.getFeatureModel()

        # Write output for tracks
        numTracks = model.getTrackModel().trackIDs(True).size()
        print "Writing track data for " + str(numTracks) + " tracks."
        trackDat = {}
        for tId in model.getTrackModel().trackIDs(True):
            track = model.getTrackModel().trackSpots(tId)

            # Ensure track spots dir exists
            trackOut = os.path.join(wellPath, chanName + "_track_spots")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')

            # Write Header
            header = 'Name, ID, Frame, '
            for feature in track.toArray()[0].getFeatures().keySet():
                if feature == 'Frame':
                    continue
                header += feature + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)
            # Write spot data
            avgTotalIntensity = 0
            for spot in track:
                #print spot.echo()
                data = [
                    spot.getName(),
                    str(spot.ID()),
                    str(spot.getFeature('FRAME'))
                ]
                for feature in spot.getFeatures():
                    if feature == 'Frame':
                        continue
                    elif feature == 'TOTAL_INTENSITY':
                        avgTotalIntensity += spot.getFeature(feature)
                    data.append(str(spot.getFeature(feature)))
                trackFile.write(','.join(data) + '\n')
            trackFile.close()
            avgTotalIntensity /= len(track)

            # Write out track stats
            # Make sure dir exists
            trackOut = os.path.join(wellPath, chanName + "_tracks")
            if not os.path.exists(trackOut):
                os.makedirs(trackOut)
            # Create output file
            trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv")
            trackFile = open(trackOut, 'w')
            # Fetch the track feature from the feature model.
            header = ''
            for featName in fm.getTrackFeatureNames():
                header += featName + ", "
            header = header[0:len(header) - 2]
            header += '\n'
            trackFile.write(header)

            features = ''
            for featName in fm.getTrackFeatureNames():
                features += str(fm.getTrackFeature(tId, featName)) + ', '
            features = features[0:len(features) - 2]
            features += '\n'
            trackFile.write(features)
            trackFile.write('\n')
            trackFile.close()

            trackDat[tId] = [
                str(tId),
                str(fm.getTrackFeature(tId, 'TRACK_DURATION')),
                str(avgTotalIntensity),
                str(fm.getTrackFeature(tId, 'TRACK_START')),
                str(fm.getTrackFeature(tId, 'TRACK_STOP'))
            ]

        # Create output file
        trackOut = os.path.join(wellPath, chanName + "_trackSummary.csv")
        trackFile = open(trackOut, 'w')
        # Fetch the track feature from the feature model.
        trackFile.write(
            'Track Id, Duration, Avg Total Intensity, Start Frame, Stop Frame \n'
        )
        for track in trackDat:
            trackFile.write(','.join(trackDat[track]) + '\n')
        trackFile.close()

        trackOut = os.path.join(wellPath, chanName + "_trackModel.xml")
        trackFile = File(trackOut)
        writer = TmXmlWriter(trackFile, model.getLogger())
        #writer.appendLog( logPanel.getTextContent() );
        writer.appendModel(trackmate.getModel())
        writer.appendSettings(trackmate.getSettings())
        #writer.appendGUIState( controller.getGuimodel() );
        writer.writeToFile()

    model.clearSpots(True)
    model.clearTracks(True)

    return trackDat
예제 #16
0
    logger.log(str(id) + ' - ' + str(model.getTrackModel().trackEdges(id)))

#---------------------------------------
# Building a settings object from a file
#---------------------------------------

# Reading the Settings object is actually currently complicated. The
# reader wants to initialize properly everything you saved in the file,
# including the spot, edge, track analyzers, the filters, the detector,
# the tracker, etc...
# It can do that, but you must provide the reader with providers, that
# are able to instantiate the correct TrackMate Java classes from
# the XML data.

# We start by creating an empty settings object
settings = Settings()

# Then we create all the providers, and point them to the target model:
detectorProvider = DetectorProvider()
trackerProvider = TrackerProvider()
spotAnalyzerProvider = SpotAnalyzerProvider()
edgeAnalyzerProvider = EdgeAnalyzerProvider()
trackAnalyzerProvider = TrackAnalyzerProvider()

# Ouf! now we can flesh out our settings object:
reader.readSettings(settings, detectorProvider, trackerProvider,
                    spotAnalyzerProvider, edgeAnalyzerProvider,
                    trackAnalyzerProvider)

logger.log(str('\n\nSETTINGS:'))
logger.log(str(settings))
예제 #17
0
 
# We just need a model for this script. Nothing else, since 
# we will do everything manually.
model = Model()
model.setLogger(Logger.IJ_LOGGER)

# Well actually, we still need a bit:
# We want to color-code the tracks by their feature, for instance 
# with the track index. But for this, we need to compute the 
# features themselves. 
#
# Manuall, this is done by declaring what features interest you
# in a settings object, and creating a ModelFeatureUpdater that 
# will listen to changes in the model, and compute the feautures
# on the fly.
settings = Settings()
settings.addTrackAnalyzer( TrackIndexAnalyzer() )
# If you want more, add more analyzers.

# The object in charge of keeping the numerical features
# up to date:
ModelFeatureUpdater( model, settings )
# Nothing more to do. When the model changes, this guy will be notified and
# recalculate all the features you declared in the settings object.


 
# Every manual edit to the model must be made 
# between a model.beginUpdate() and a model.endUpdate()
# call, otherwise you will mess with the event signalling
# and feature calculation.
예제 #18
0
#----------------------------

# Some of the parameters we configure below need to have
# a reference to the model at creation. So we create an
# empty model now.

model = Model()

# Send all messages to ImageJ log window.
model.setLogger(Logger.IJ_LOGGER)

#------------------------
# Prepare settings object
#------------------------

settings = Settings()
settings.setFrom(imp)
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

# Configure detector - We use the Strings for the keys
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = {
    'DO_SUBPIXEL_LOCALIZATION': DO_SUBPIXEL_LOCALIZATION,
    'RADIUS': RADIUS,
    'TARGET_CHANNEL': TARGET_CHANNEL,
    'THRESHOLD': THRESHOLD,
    'DO_MEDIAN_FILTERING': DO_MEDIAN_FILTERING,
}

# Configure spot filters on contrast
    def trackmate(self):
        calibration = self.imp.getCalibration()
        model = Model()
        model.setLogger(Logger.IJ_LOGGER)
        settings = Settings()
        settings.setFrom(self.imp)
        # Configure detector - We use the Strings for the keys
        settings.detectorFactory = LogDetectorFactory()
        settings.detectorSettings = {
            'DO_SUBPIXEL_LOCALIZATION': True,
            'RADIUS': calibration.getX(self.trackmateSize),
            'TARGET_CHANNEL': 1,
            'THRESHOLD': self.trackmateThreashold,
            'DO_MEDIAN_FILTERING': True,
        }

        # Configure spot filters - Classical filter on quality
        filter1 = FeatureFilter('QUALITY', 0.01, True)
        settings.addSpotFilter(filter1)
        settings.addSpotAnalyzerFactory(SpotIntensityMultiCAnalyzerFactory())

        settings.initialSpotFilterValue = 1

        # Configure tracker - We want to allow merges and fusions
        settings.trackerFactory = SparseLAPTrackerFactory()
        settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()

        trackmate = TrackMate(model, settings)

        #--------
        # Process
        #--------

        ok = trackmate.checkInput()
        if not ok:
            print("NOT OK")

        ok = trackmate.process()
        if not ok:
            print("NOT OK")

        #----------------
        # Display results
        #----------------

        #selectionModel = SelectionModel(model)
        #displayer =  HyperStackDisplayer(model, selectionModel, self.imp)
        #displayer.render()
        #displayer.refresh()

        # Echo results with the logger we set at start:
        spots = model.getSpots()
        return spots.iterable(True)
예제 #20
0
# Some of the parameters we configure below need to have
# a reference to the model at creation. So we create an
# empty model now.
   
model = Model()
   
# Send all messages to ImageJ log window.
model.setLogger(Logger.IJ_LOGGER)
   
   
      
#------------------------
# Prepare settings object
#------------------------
      
settings = Settings()
settings.setFrom(imp)
      
# Configure detector - We use the Strings for the keys
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = { 
    'DO_SUBPIXEL_LOCALIZATION' : True,
    'RADIUS' : 2.5,
    'TARGET_CHANNEL' : 1,
    'THRESHOLD' : 0.,
    'DO_MEDIAN_FILTERING' : False,
}  
   
# Configure spot filters - Classical filter on quality
filter1 = FeatureFilter('QUALITY', 1, True)
settings.addSpotFilter(filter1)
def track_single_batch(path, filename):
    # Get currently selected image
    imp = WindowManager.getCurrentImage()
    # imp = IJ.openImage('https://fiji.sc/samples/FakeTracks.tif')
    imp.show()

    #----------------------------
    # Create the model object now
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    #settings.detectorFactory = LogDetectorFactory()
    settings.detectorFactory = BlockLogDetectorFactory()
    print
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 7.5,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': 0.25,
        'DO_MEDIAN_FILTERING': False,
        'NSPLIT': 3,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 0.1, True)  # in higher SNR;
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    #settings.trackerFactory = LAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = True
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 15.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 15.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 5

    # feature

    spotAnalyzerProvider = SpotAnalyzerProvider()
    for key in spotAnalyzerProvider.getKeys():
        print(key)
        settings.addSpotAnalyzerFactory(spotAnalyzerProvider.getFactory(key))

    edgeAnalyzerProvider = EdgeAnalyzerProvider()
    for key in edgeAnalyzerProvider.getKeys():
        print(key)
        settings.addEdgeAnalyzer(edgeAnalyzerProvider.getFactory(key))

    trackAnalyzerProvider = TrackAnalyzerProvider()
    for key in trackAnalyzerProvider.getKeys():
        print(key)
        settings.addTrackAnalyzer(trackAnalyzerProvider.getFactory(key))

    #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 3, True)
    #settings.addTrackFilter(filter2)

    # processing
    trackmate = TrackMate(model, settings)
    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    try:
        ok = trackmate.process()
    except:
        IJ.log("Nothing detected")
    else:
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()

        # Echo results with the logger we set at start:
        model.getLogger().log(str(model))

    save_path = os.path.join(path, 'result')
    if not os.path.exists(save_path):
        os.mkdir(save_path, 0755)
    outFile = File(save_path, filename)
    ExportTracksToXML.export(model, settings, outFile)
    imp.close()
예제 #22
0
def create_trackmate(imp, results_table):
    """
    Creates a TrackMate instance configured to operated on the specified
    ImagePlus imp with cell analysis stored in the specified ResultsTable
    results_table.
    """

    cal = imp.getCalibration()

    # TrackMate.

    # Model.
    model = Model()
    model.setLogger(Logger.IJ_LOGGER)
    model.setPhysicalUnits(cal.getUnit(), cal.getTimeUnit())

    # Settings.
    settings = Settings()
    settings.setFrom(imp)

    # Create the TrackMate instance.
    trackmate = TrackMate(model, settings)

    # Add ALL the feature analyzers known to TrackMate, via
    # providers.
    # They offer automatic analyzer detection, so all the
    # available feature analyzers will be added.
    # Some won't make sense on the binary image (e.g. contrast)
    # but nevermind.

    spotAnalyzerProvider = SpotAnalyzerProvider()
    for key in spotAnalyzerProvider.getKeys():
        print(key)
        settings.addSpotAnalyzerFactory(spotAnalyzerProvider.getFactory(key))

    edgeAnalyzerProvider = EdgeAnalyzerProvider()
    for key in edgeAnalyzerProvider.getKeys():
        print(key)
        settings.addEdgeAnalyzer(edgeAnalyzerProvider.getFactory(key))

    trackAnalyzerProvider = TrackAnalyzerProvider()
    for key in trackAnalyzerProvider.getKeys():
        print(key)
        settings.addTrackAnalyzer(trackAnalyzerProvider.getFactory(key))

    trackmate.getModel().getLogger().log(
        settings.toStringFeatureAnalyzersInfo())
    trackmate.computeSpotFeatures(True)
    trackmate.computeEdgeFeatures(True)
    trackmate.computeTrackFeatures(True)

    # Skip detection and get spots from results table.
    spots = spots_from_results_table(results_table, cal.frameInterval)
    model.setSpots(spots, False)

    # Configure detector. We put nothing here, since we already have the spots
    # from previous step.
    settings.detectorFactory = ManualDetectorFactory()
    settings.detectorSettings = {}
    settings.detectorSettings['RADIUS'] = 1.

    # Configure tracker
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 20.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 20.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 3

    settings.initialSpotFilterValue = -1.

    return trackmate
예제 #23
0
			#----------------------------
			# Create the model object now
			#----------------------------
			    
			# Some of the parameters we configure below need to have
			# a reference to the model at creation. So we create an
			# empty model now.	    
			model = Model();		    
			# Send all messages to ImageJ log window.
			model.setLogger(Logger.IJ_LOGGER);
			model.setPhysicalUnits(Calib.getUnit(), Calib.getTimeUnit());

			#------------------------
			# Prepare settings object
			#------------------------	       
			settings = Settings();
					
			rm.select(imp,idx);
			actual_roi = rm.getRoi(idx);
			imp.setRoi(actual_roi);
			settings.setFrom(imp);
			settings.tstart = Initial_frames;
			settings.tend = imp.getNFrames() - Final_frames -1;
			#settings.roi = rm.getSelectedRoisAsArray();
			       
			# Configure detector - We use the Strings for the keys
			settings.detectorFactory = LogDetectorFactory();
			settings.detectorSettings = { 
			    'DO_SUBPIXEL_LOCALIZATION' : Subpixel_localization,
			    'RADIUS' : Spot_radius,
			    'TARGET_CHANNEL' : 1,
import fiji.plugin.trackmate.extra.spotanalyzer.SpotMultiChannelIntensityAnalyzerFactory as SpotMultiChannelIntensityAnalyzerFactory

import ij.IJ as IJ
import java.io.File as File
import java.util.ArrayList as ArrayList

# Swap Z and T dimensions if T=1
dims = imp.getDimensions()  # default order: XYCZT
if (dims[4] == 1):
    imp.setDimensions(dims[2, 4, 3])

# Get the number of channels
nChannels = imp.getNChannels()

# Setup settings for TrackMate
settings = Settings()
settings.setFrom(imp)
settings.dt = 0.05

# Spot analyzer: we want the multi-C intensity analyzer.
settings.addSpotAnalyzerFactory(SpotMultiChannelIntensityAnalyzerFactory())

# Spot detector.
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = settings.detectorFactory.getDefaultSettings()
settings.detectorSettings['RADIUS'] = radius
settings.detectorSettings['THRESHOLD'] = threshold

# Spot tracker.
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
예제 #25
0
        # Get the number of channels.
        # IMPORTANT: This code assumes that the H2B channel is Channel 2 and ErkKTR is Channel 1
        nChannels = imp.getNChannels()

        #----------------------------
        # Create the model object now
        #----------------------------
        model = Model()

        # Send all messages to ImageJ log window.
        model.setLogger(Logger.IJ_LOGGER)

        #------------------------
        # Prepare settings object
        #------------------------
        settings = Settings()
        settings.setFrom(imp)

        # Use the spot analyzer for assessing fluorescence intensities in each channel
        settings.addSpotAnalyzerFactory(
            SpotMultiChannelIntensityAnalyzerFactory())

        # Configure the detector for finding nuclei
        settings.detectorFactory = LogDetectorFactory()
        settings.detectorSettings = {
            'DO_SUBPIXEL_LOCALIZATION': True,
            'RADIUS':
            9.,  # KEY PARAMETER: expect a 9 um nucleus radius, which works very well for keratinocytes
            'TARGET_CHANNEL':
            2,  # KEY PARAMETER: H2B for nucleus segmentation is Channel 2
            'THRESHOLD': 2.,
    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)



    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION' : True,
        'RADIUS' : 1.25,
        'TARGET_CHANNEL' : 1,
        'THRESHOLD' : int_thresh,
        'DO_MEDIAN_FILTERING' : True,
    }
    settings.dx = 100.0
    settings.dy = 100.0

예제 #27
0
def TrackMate_main(infile, outfile):
    file = File(infile)

    # We have to feed a logger to the reader.
    logger = Logger.IJ_LOGGER

    #-------------------
    # Instantiate reader
    #-------------------

    reader = TmXmlReader(file)
    if not reader.isReadingOk():
        sys.exit(reader.getErrorMessage())
    #-----------------
    # Get a full model
    #-----------------

    # This will return a fully working model, with everything
    # stored in the file. Missing fields (e.g. tracks) will be
    # null or None in python
    model = reader.getModel()
    model.setLogger(Logger.IJ_LOGGER)
    # model is a fiji.plugin.trackmate.Model

    #---------------------------------------
    # Building a settings object from a file
    #---------------------------------------

    # We start by creating an empty settings object
    settings = Settings()

    # Then we create all the providers, and point them to the target model:
    detectorProvider = DetectorProvider()
    trackerProvider = TrackerProvider()
    spotAnalyzerProvider = SpotAnalyzerProvider()
    edgeAnalyzerProvider = EdgeAnalyzerProvider()
    trackAnalyzerProvider = TrackAnalyzerProvider()

    reader.readSettings(settings, detectorProvider, trackerProvider,
                        spotAnalyzerProvider, edgeAnalyzerProvider,
                        trackAnalyzerProvider)

    #----------------
    # Save results
    #----------------

    # The feature model, that stores edge and track features.
    fm = model.getFeatureModel()

    f = open(outfile, 'wb')

    for id in model.getTrackModel().trackIDs(True):
        track = model.getTrackModel().trackSpots(id)
        for spot in track:
            sid = spot.ID()
            # Fetch spot features directly from spot.
            x = spot.getFeature('POSITION_X')
            y = spot.getFeature('POSITION_Y')
            t = spot.getFeature('FRAME')
            q = spot.getFeature('QUALITY')
            snr = spot.getFeature('SNR')
            mean = spot.getFeature('MEAN_INTENSITY')

            semiaxislength_c = spot.getFeature('ELLIPSOIDFIT_SEMIAXISLENGTH_C')
            if semiaxislength_c is None:
                semiaxislength_c = 0

            semiaxislength_b = spot.getFeature('ELLIPSOIDFIT_SEMIAXISLENGTH_B')
            if semiaxislength_b is None:
                semiaxislength_b = 0

            phi_b = spot.getFeature('ELLIPSOIDFIT_AXISPHI_B')
            if phi_b is None:
                phi_b = 0

            data = Array.newInstance(Class.forName("java.lang.String"), 9)
            #String[] entries = "first#second#third".split("#");
            data[0] = str(sid)
            data[1] = str(id)
            data[2] = str(x)
            data[3] = str(y)
            data[4] = str(t)
            data[5] = str(semiaxislength_c)
            data[6] = str(semiaxislength_b)
            data[7] = str(phi_b)
            data[8] = str(mean)

            # create csv writer
            writer = csv.writer(f)

            row = [
                data[0], data[1], data[2], data[3], data[4], data[5], data[6],
                data[7], data[8]
            ]
            writer.writerow(row)

    f.close()
    print('Saved ' + str(model.getTrackModel().nTracks(True)) + ' tracks.')
예제 #28
0
                #-------------------------
                # Instantiate model object
                #-------------------------

                model = Model()
                model.setPhysicalUnits('micron', 'frames')

                # Set logger
                model.setLogger(Logger.IJ_LOGGER)

                #------------------------
                # Prepare settings object
                #------------------------

                settings = Settings()
                settings.setFrom(imp)

                # Configure detector - We use the Strings for the keys
                settings.detectorFactory = LogDetectorFactory()
                settings.detectorSettings = {
                    'DO_SUBPIXEL_LOCALIZATION': True,
                    'RADIUS': spot_radius[i_col] * resolution,
                    'TARGET_CHANNEL': color,
                    'THRESHOLD': 0.000001,
                    'DO_MEDIAN_FILTERING': True,
                }

                # Configure spot filters
                w = imp.getWidth()
                h = imp.getHeight()
예제 #29
0
def run_trackmate(
    imp, path_out="./", detector="log", radius=2.5, threshold=0.0, median_filter=False
):
    """Log Trackmate detection run with given parameters.
    Saves spots in a csv file in the given path_out with encoded parameters.

    Args:
        imp: ImagePlus to be processed
        path_out: Output directory to save files.
        detector: Type of detection method. Options are 'log', 'dog'.
        radius: Radius of spots in pixels.
        threshold: Threshold value to filter spots.
        median_filter: True if median_filtering should be used.
    """
    if imp.dimensions[2] != 1:
        raise ValueError(
            "Imp's dimensions must be [n, n, 1] but are " + imp.dimensions[2]
        )

    # Create the model object now
    model = Model()
    model.setLogger(Logger.VOID_LOGGER)

    # Prepare settings object
    settings = Settings()
    settings.setFrom(imp)

    # Configure detector
    settings.detectorFactory = (
        DogDetectorFactory() if detector == "dog" else LogDetectorFactory()
    )
    settings.detectorSettings = {
        "DO_SUBPIXEL_LOCALIZATION": True,
        "RADIUS": radius,
        "TARGET_CHANNEL": 1,
        "THRESHOLD": threshold,
        "DO_MEDIAN_FILTERING": median_filter,
    }

    # Instantiate plugin
    trackmate = TrackMate(model, settings)

    # Process
    # output = trackmate.process()
    output = trackmate.execDetection()
    if not output:
        print("error process")
        return None

    # Get output from a single image
    fname = str(imp.title)
    spots = [["fname", "detector", "radius", "threshold", "median", "x", "y", "q"]]
    for spot in model.spots.iterator(0):
        x = spot.getFeature("POSITION_X")
        y = spot.getFeature("POSITION_Y")
        q = spot.getFeature("QUALITY")
        spots.append([fname, detector, radius, threshold, median_filter, x, y, q])

    # Save output
    outname = os.path.splitext(os.path.basename(fname))[0] + "_" + str(radius) + ".csv"
    with open(os.path.join(path_out, outname), "wb") as f:
        wr = csv.writer(f)
        for row in spots:
            wr.writerow(row)
예제 #30
0
#imp.show()

#-------------------------
# Instantiate model object
#-------------------------

model = Model()

# Set logger
model.setLogger(Logger.IJ_LOGGER)

#------------------------
# Prepare settings object
#------------------------

settings = Settings()
settings.setFrom(imp)

# Configure detector
settings.detectorFactory = DogDetectorFactory()
settings.detectorSettings = {{
    DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION: True,
    DetectorKeys.KEY_RADIUS: {radius},
    DetectorKeys.KEY_TARGET_CHANNEL: 1,
    DetectorKeys.KEY_THRESHOLD: {threshold},
    DetectorKeys.KEY_DO_MEDIAN_FILTERING: {do_median_filtering}
}}

# Configure tracker
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    model.getLogger().log('')
    model.getLogger().log('Filename' + file1 + "TEST:" + str(file1.endswith("*R3D_PRJ.dv")))
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION' : True,
        'RADIUS' : 5.0,
        'TARGET_CHANNEL' : 1,
        'THRESHOLD' : 20.0,
        'DO_MEDIAN_FILTERING' : False,
    }

    # Configure spot filters - Classical filter on quality
예제 #32
0
def create_trackmate( imp, results_table ):
	"""
	Creates a TrackMate instance configured to operated on the specified
	ImagePlus imp with cell analysis stored in the specified ResultsTable
	results_table.
	"""

	cal = imp.getCalibration()

	# TrackMate.

	# Model.
	model = Model()
	model.setLogger( Logger.IJ_LOGGER )
	model.setPhysicalUnits( cal.getUnit(), cal.getTimeUnit() )

	# Settings.
	settings = Settings()
	settings.setFrom( imp )

	# Create the TrackMate instance.
	trackmate = TrackMate( model, settings )

	# Add ALL the feature analyzers known to TrackMate, via
	# providers.
	# They offer automatic analyzer detection, so all the
	# available feature analyzers will be added.
	# Some won't make sense on the binary image (e.g. contrast)
	# but nevermind.

	spotAnalyzerProvider = SpotAnalyzerProvider()
	for key in spotAnalyzerProvider.getKeys():
		print( key )
		settings.addSpotAnalyzerFactory( spotAnalyzerProvider.getFactory( key ) )

	edgeAnalyzerProvider = EdgeAnalyzerProvider()
	for  key in edgeAnalyzerProvider.getKeys():
		print( key )
		settings.addEdgeAnalyzer( edgeAnalyzerProvider.getFactory( key ) )

	trackAnalyzerProvider = TrackAnalyzerProvider()
	for key in trackAnalyzerProvider.getKeys():
		print( key )
		settings.addTrackAnalyzer( trackAnalyzerProvider.getFactory( key ) )

	trackmate.getModel().getLogger().log( settings.toStringFeatureAnalyzersInfo() )
	trackmate.computeSpotFeatures( True )
	trackmate.computeEdgeFeatures( True )
	trackmate.computeTrackFeatures( True )

	# Skip detection and get spots from results table.
	spots = spots_from_results_table( results_table, cal.frameInterval )
	model.setSpots( spots, False )

	# Configure detector. We put nothing here, since we already have the spots
	# from previous step.
	settings.detectorFactory = ManualDetectorFactory()
	settings.detectorSettings = {}
	settings.detectorSettings[ 'RADIUS' ] = 1.

	# Configure tracker
	settings.trackerFactory = SparseLAPTrackerFactory()
	settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
	settings.trackerSettings[ 'LINKING_MAX_DISTANCE' ] 		= 10.0
	settings.trackerSettings[ 'GAP_CLOSING_MAX_DISTANCE' ]	= 15.0
	settings.trackerSettings[ 'MAX_FRAME_GAP' ]				= 3
	settings.trackerSettings[ 'ALLOW_TRACK_SPLITTING' ]		= True
	settings.trackerSettings[ 'SPLITTING_MAX_DISTANCE' ]	= 7.0

	settings.trackerSettings

	settings.initialSpotFilterValue = -1.

	### print(model.getFeatureModel().getTrackFeatureNames())
	# TRACK_START: Track start,
	# TRACK_INDEX: Track index,
	# NUMBER_MERGES: Number of merge events,
	# TRACK_STD_SPEED: Velocity standard deviation,
	# TRACK_ID: Track ID,
	# TRACK_MEDIAN_QUALITY: Median quality,
	# TRACK_STD_QUALITY: Quality standard deviation,
	# TRACK_X_LOCATION: X Location (mean),
	# TRACK_MEDIAN_SPEED: Median velocity,
	# NUMBER_SPOTS: Number of spots in track,
	# TRACK_MIN_SPEED: Minimal velocity,
	# NUMBER_GAPS: Number of gaps,
	# TRACK_Z_LOCATION: Z Location (mean),
	# TRACK_STOP: Track stop,
	# TRACK_MEAN_SPEED: Mean velocity,
	# NUMBER_SPLITS: Number of split events,
	# TRACK_MAX_SPEED: Maximal velocity,
	# TRACK_Y_LOCATION: Y Location (mean),
	# TRACK_DISPLACEMENT: Track displacement,
	# NUMBER_COMPLEX: Complex points,
	# TRACK_MEAN_QUALITY: Mean quality,
	# TRACK_DURATION: Duration of track,
	# TRACK_MAX_QUALITY: Maximal quality,
	# LONGEST_GAP: Longest gap,
	# TRACK_MIN_QUALITY: Minimal quality

	settings.addTrackFilter(FeatureFilter('NUMBER_SPLITS', 0.9, True))

	return trackmate
예제 #33
0
def process(srcDir, dstDir, currentDir, fileName, keepDirectories):
    print "Processing:"

    # Opening the image
    print "Open image file", fileName
    imp = IJ.openImage(os.path.join(currentDir, fileName))

    #Here we make sure the calibration are correct
    units = "pixel"
    TimeUnit = "unit"

    newCal = Calibration()
    newCal.pixelWidth = 1
    newCal.pixelHeight = 1
    newCal.frameInterval = 1

    newCal.setXUnit(units)
    newCal.setYUnit(units)
    newCal.setTimeUnit(TimeUnit)
    imp.setCalibration(newCal)
    cal = imp.getCalibration()

    dims = imp.getDimensions()  # default order: XYCZT

    if (dims[4] == 1):
        imp.setDimensions(1, 1, dims[3])

# Start the tracking

    model = Model()

    #Read the image calibration
    model.setPhysicalUnits(cal.getUnit(), cal.getTimeUnit())

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = DownsampleLogDetectorFactory()
    settings.detectorSettings = {
        DetectorKeys.KEY_RADIUS: 2.,
        DetectorKeys.KEY_DOWNSAMPLE_FACTOR: 2,
        DetectorKeys.KEY_THRESHOLD: 1.,
    }

    print(settings.detectorSettings)

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 0, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = LINKING_MAX_DISTANCE
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = ALLOW_TRACK_SPLITTING
    settings.trackerSettings['SPLITTING_MAX_DISTANCE'] = SPLITTING_MAX_DISTANCE
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = ALLOW_TRACK_MERGING
    settings.trackerSettings['MERGING_MAX_DISTANCE'] = MERGING_MAX_DISTANCE
    settings.trackerSettings[
        'GAP_CLOSING_MAX_DISTANCE'] = GAP_CLOSING_MAX_DISTANCE
    settings.trackerSettings['MAX_FRAME_GAP'] = MAX_FRAME_GAP

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

    filter2 = FeatureFilter('TRACK_DISPLACEMENT', 10, True)
    settings.addTrackFilter(filter2)

    #-------------------
    # Instantiate plugin
    #-------------------
    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

#----------------
# Display results
#----------------
    if showtracks:
        model.getLogger().log('Found ' +
                              str(model.getTrackModel().nTracks(True)) +
                              ' tracks.')
        selectionModel = SelectionModel(model)
        displayer = HyperStackDisplayer(model, selectionModel, imp)
        displayer.render()
        displayer.refresh()


# The feature model, that stores edge and track features.
    fm = model.getFeatureModel()

    with open(dstDir + fileName + 'tracks_properties.csv', "w") as file:
        writer1 = csv.writer(file)
        writer1.writerow([
            "track #", "TRACK_MEAN_SPEED (micrometer.secs)",
            "TRACK_MAX_SPEED (micrometer.secs)", "NUMBER_SPLITS",
            "TRACK_DURATION (secs)", "TRACK_DISPLACEMENT (micrometer)"
        ])

        with open(dstDir + fileName + 'spots_properties.csv',
                  "w") as trackfile:
            writer2 = csv.writer(trackfile)
            #writer2.writerow(["spot ID","POSITION_X","POSITION_Y","Track ID", "FRAME"])
            writer2.writerow(
                ["Tracking ID", "Timepoint", "Time (secs)", "X pos", "Y pos"])

            for id in model.getTrackModel().trackIDs(True):

                # Fetch the track feature from the feature model.
                v = (fm.getTrackFeature(id, 'TRACK_MEAN_SPEED') *
                     Pixel_calibration) / Time_interval
                ms = (fm.getTrackFeature(id, 'TRACK_MAX_SPEED') *
                      Pixel_calibration) / Time_interval
                s = fm.getTrackFeature(id, 'NUMBER_SPLITS')
                d = fm.getTrackFeature(id, 'TRACK_DURATION') * Time_interval
                e = fm.getTrackFeature(
                    id, 'TRACK_DISPLACEMENT') * Pixel_calibration
                model.getLogger().log('')
                model.getLogger().log('Track ' + str(id) +
                                      ': mean velocity = ' + str(v) + ' ' +
                                      model.getSpaceUnits() + '/' +
                                      model.getTimeUnits())

                track = model.getTrackModel().trackSpots(id)
                writer1.writerow(
                    [str(id), str(v),
                     str(ms), str(s),
                     str(d), str(e)])

                for spot in track:
                    sid = spot.ID()
                    x = spot.getFeature('POSITION_X')
                    y = spot.getFeature('POSITION_Y')
                    z = spot.getFeature('TRACK_ID')
                    t = spot.getFeature('FRAME')
                    time = int(t) * int(Time_interval)
                    writer2.writerow(
                        [str(id), str(t),
                         str(time), str(x),
                         str(y)])
예제 #34
0
def track():
    imp = IJ.getImage()
    nChannels = imp.getNChannels()  # Get the number of channels 
    orgtitle = imp.getTitle()
    IJ.run("Subtract Background...", "rolling=50 sliding stack")
    IJ.run("Enhance Contrast...", "saturated=0.3")
    IJ.run("Multiply...", "value=10 stack")
    IJ.run("Subtract Background...", "rolling=50 sliding stack")
    IJ.run("Set Scale...", "distance=0")
    
    channels = ChannelSplitter.split(imp)
    imp_GFP = channels[0]
    imp_RFP = channels[1]
    IJ.selectWindow(orgtitle)
    IJ.run("Close")
    ic = ImageCalculator()
    imp_merge = ic.run("Add create stack", imp_GFP, imp_RFP)
    imp_merge.setTitle("add_channels")
    imp_merge.show()
    imp_RFP.show()
    imp_GFP.show()
    
    imp5 = ImagePlus()
    IJ.run(imp5, "Merge Channels...", "c1=[" + imp_merge.title + "] c2=" + imp_GFP.title + ' c3=' + imp_RFP.title + " create")
    print("c1=[" + imp_merge.title + "] c2=" + imp_GFP.title + ' c3=' + imp_RFP.title + " create")
    imp5.show()
    imp5 = IJ.getImage()
    
    nChannels = imp5.getNChannels()
    # Setup settings for TrackMate
    settings = Settings()
    settings.setFrom(imp5)
    
    # Spot analyzer: we want the multi-C intensity analyzer.
    settings.addSpotAnalyzerFactory(SpotMultiChannelIntensityAnalyzerFactory())   

    # Spot detector.
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = settings.detectorFactory.getDefaultSettings()
    settings.detectorSettings['TARGET_CHANNEL'] = 1
    settings.detectorSettings['RADIUS'] = 24.0
    settings.detectorSettings['THRESHOLD'] = 0.0
    
    # Spot tracker.
    # Configure tracker - We don't want to allow merges or splits
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap() # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = False
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = False
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 8.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 8.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 1
    
    # Configure track filters
    settings.addTrackAnalyzer(TrackDurationAnalyzer())
    settings.addTrackAnalyzer(TrackSpotQualityFeatureAnalyzer())
    
    filter1 = FeatureFilter('TRACK_DURATION', 20, True)
    settings.addTrackFilter(filter1)
    
    # Run TrackMate and store data into Model.
    model = Model()
    trackmate = TrackMate(model, settings)
    
    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
            
    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))
    
    selectionModel = SelectionModel(model)
    displayer =  HyperStackDisplayer(model, selectionModel, imp5)
    displayer.render()
    displayer.refresh()
    
    IJ.log('TrackMate completed successfully.')
    IJ.log('Found %d spots in %d tracks.' % (model.getSpots().getNSpots(True) , model.getTrackModel().nTracks(True)))
    
    # Print results in the console.
    headerStr = '%10s %10s %10s %10s %10s %10s' % ('Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z')
    rowStr = '%10d %10d %10d %10.1f %10.1f %10.1f'
    for i in range( nChannels ):
        headerStr += (' %10s' % ( 'C' + str(i+1) ) )
        rowStr += ( ' %10.1f' )
    
    #open a file to save results
    myfile = open('/home/rickettsia/Desktop/data/Clamydial_Image_Analysis/EMS_BMECBMELVA_20X_01122019/data/'+orgtitle.split('.')[0]+'.csv', 'wb')
    wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
    wr.writerow(['Spot_ID', 'Track_ID', 'Frame', 'X', 'Y', 'Z', 'Channel_1', 'Channel_2'])
    
    IJ.log('\n')
    IJ.log(headerStr)
    tm = model.getTrackModel()
    trackIDs = tm.trackIDs(True)
    for trackID in trackIDs:
        spots = tm.trackSpots(trackID)
    
        # Let's sort them by frame.
        ls = ArrayList(spots)
        
        for spot in ls:
            values = [spot.ID(), trackID, spot.getFeature('FRAME'), \
                spot.getFeature('POSITION_X'), spot.getFeature('POSITION_Y'), spot.getFeature('POSITION_Z')]
            for i in range(nChannels):
                values.append(spot.getFeature('MEAN_INTENSITY%02d' % (i+1)))
                
            IJ.log(rowStr % tuple(values))
            l1 = (values[0], values[1], values[2], values[3], values[4], values[5], values[7], values[8])
            wr.writerow(l1)
    
    myfile.close()
    IJ.selectWindow("Merged")
    IJ.run("Close")
예제 #35
0
import fiji.plugin.trackmate.extra.spotanalyzer.SpotMultiChannelIntensityAnalyzerFactory as SpotMultiChannelIntensityAnalyzerFactory

import ij. IJ as IJ
import java.io.File as File
import java.util.ArrayList as ArrayList

# Swap Z and T dimensions if T=1
dims = imp.getDimensions() # default order: XYCZT
if (dims[4] == 1):
	imp.setDimensions( dims[2,4,3] )

# Get the number of channels 
nChannels = imp.getNChannels()

# Setup settings for TrackMate
settings = Settings()
settings.setFrom( imp )
settings.dt = 0.05

# Spot analyzer: we want the multi-C intensity analyzer.
settings.addSpotAnalyzerFactory( SpotMultiChannelIntensityAnalyzerFactory() )

# Spot detector.
settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = settings.detectorFactory.getDefaultSettings()
settings.detectorSettings['RADIUS'] = radius
settings.detectorSettings['THRESHOLD'] = threshold

# Spot tracker.
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
예제 #36
0
def track(imp):

    from fiji.plugin.trackmate import Model
    from fiji.plugin.trackmate import Settings
    from fiji.plugin.trackmate import TrackMate
    from fiji.plugin.trackmate import SelectionModel
    from fiji.plugin.trackmate import Logger
    from fiji.plugin.trackmate.detection import LogDetectorFactory
    from fiji.plugin.trackmate.tracking.sparselap import SparseLAPTrackerFactory
    from fiji.plugin.trackmate.tracking import LAPUtils
    from ij import IJ
    import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as HyperStackDisplayer
    import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter
    import sys
    import fiji.plugin.trackmate.features.track.TrackDurationAnalyzer as TrackDurationAnalyzer

    # Get currently selected image
    #imp = WindowManager.getCurrentImage()
    #imp = IJ.openImage('http://fiji.sc/samples/FakeTracks.tif')
    #imp.show()

    #----------------------------
    # Create the model object now
    #----------------------------

    # Some of the parameters we configure below need to have
    # a reference to the model at creation. So we create an
    # empty model now.

    model = Model()

    # Send all messages to ImageJ log window.
    model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector - We use the Strings for the keys
    settings.detectorFactory = LogDetectorFactory()
    settings.detectorSettings = {
        'DO_SUBPIXEL_LOCALIZATION': True,
        'RADIUS': 3.0,
        'TARGET_CHANNEL': 1,
        'THRESHOLD': 1.,
        'DO_MEDIAN_FILTERING': False,
    }

    # Configure spot filters - Classical filter on quality
    filter1 = FeatureFilter('QUALITY', 30, True)
    settings.addSpotFilter(filter1)

    # Configure tracker - We want to allow merges and fusions
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap(
    )  # almost good enough
    settings.trackerSettings['ALLOW_TRACK_SPLITTING'] = True
    settings.trackerSettings['ALLOW_TRACK_MERGING'] = True

    # Configure track analyzers - Later on we want to filter out tracks
    # based on their displacement, so we need to state that we want
    # track displacement to be calculated. By default, out of the GUI,
    # not features are calculated.

    # The displacement feature is provided by the TrackDurationAnalyzer.

    settings.addTrackAnalyzer(TrackDurationAnalyzer())

    #-------------------
    # Instantiate plugin
    #-------------------

    trackmate = TrackMate(model, settings)

    #--------
    # Process
    #--------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    #----------------
    # Display results
    #----------------

    selectionModel = SelectionModel(model)
    displayer = HyperStackDisplayer(model, selectionModel, imp)
    displayer.render()
    displayer.refresh()

    # Echo results with the logger we set at start:
    #model.getLogger().log(str(model))

    fm = model.getFeatureModel()
    norm_x = []
    norm_y = []
    for id in model.getTrackModel().trackIDs(True):
        track = model.getTrackModel().trackSpots(id)
        for spot in track:
            t = spot.getFeature('FRAME')

            if (t == 0.0):
                min_x = spot.getFeature('POSITION_X')
                min_y = spot.getFeature('POSITION_Y')
        for spot in track:

            norm_x.append(spot.getFeature('POSITION_X') - min_x)
            norm_y.append(spot.getFeature('POSITION_Y') - min_y)

    max_x = abs(max(norm_x, key=abs))
    max_y = abs(max(norm_y, key=abs))

    return max_x, max_y
예제 #37
0
#6. Run trackmate
#7. Get spot or track features
#8. Save log as a parsable data set

#1.
#Opening data and determing auto quality number

the_input = getArgument()
the_list = the_input.rpartition(" ")
image = the_list[0]
imp = IJ.openImage(image)
imp.show()
subtraction = float(the_list[2])

model = Model()
settings = Settings()
settings.setFrom(imp)
settings.detectorFactory = DogDetectorFactory()
settings.detectorSettings = {
    'DO_SUBPIXEL_LOCALIZATION': True,
    'RADIUS': 0.350,
    'TARGET_CHANNEL': 1,
    'THRESHOLD': 0.0,
    'DO_MEDIAN_FILTERING': True,
}
settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
settings.trackerSettings['LINKING_MAX_DISTANCE'] = 1.000
settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 1.000
settings.trackerSettings['MAX_FRAME_GAP'] = 3

#Running specific trackmate tasks
예제 #38
0
#imp.show()

#-------------------------
# Instantiate model object
#-------------------------

model = Model()

# Set logger
model.setLogger(Logger.IJ_LOGGER)

#------------------------
# Prepare settings object
#------------------------

settings = Settings()
settings.setFrom(imp)

# Configure detector
settings.detectorFactory = DogDetectorFactory()
settings.detectorSettings = {{
    DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION: True,
    DetectorKeys.KEY_RADIUS: 2.5,
    DetectorKeys.KEY_TARGET_CHANNEL: 1,
    DetectorKeys.KEY_THRESHOLD: 5.,
    DetectorKeys.KEY_DO_MEDIAN_FILTERING: False,
}}

# Configure tracker
settings.trackerFactory = SparseLAPTrackerFactory()
settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
예제 #39
0
def runTrackMate(imp):
    import fiji.plugin.trackmate.Settings as Settings
    import fiji.plugin.trackmate.Model as Model
    import fiji.plugin.trackmate.SelectionModel as SelectionModel
    import fiji.plugin.trackmate.TrackMate as TrackMate
    import fiji.plugin.trackmate.Logger as Logger
    import fiji.plugin.trackmate.detection.DetectorKeys as DetectorKeys
    import fiji.plugin.trackmate.detection.DogDetectorFactory as DogDetectorFactory
    import fiji.plugin.trackmate.tracking.sparselap.SparseLAPTrackerFactory as SparseLAPTrackerFactory
    import fiji.plugin.trackmate.tracking.LAPUtils as LAPUtils
    import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as HyperStackDisplayer
    import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter
    import fiji.plugin.trackmate.features.FeatureAnalyzer as FeatureAnalyzer
    import fiji.plugin.trackmate.features.spot.SpotContrastAndSNRAnalyzerFactory as SpotContrastAndSNRAnalyzerFactory
    import fiji.plugin.trackmate.action.ExportStatsToIJAction as ExportStatsToIJAction
    import fiji.plugin.trackmate.io.TmXmlReader as TmXmlReader
    import fiji.plugin.trackmate.action.ExportTracksToXML as ExportTracksToXML
    import fiji.plugin.trackmate.io.TmXmlWriter as TmXmlWriter
    import fiji.plugin.trackmate.features.ModelFeatureUpdater as ModelFeatureUpdater
    import fiji.plugin.trackmate.features.SpotFeatureCalculator as SpotFeatureCalculator
    import fiji.plugin.trackmate.features.spot.SpotContrastAndSNRAnalyzer as SpotContrastAndSNRAnalyzer
    import fiji.plugin.trackmate.features.spot.SpotIntensityAnalyzerFactory as SpotIntensityAnalyzerFactory
    import fiji.plugin.trackmate.features.track.TrackSpeedStatisticsAnalyzer as TrackSpeedStatisticsAnalyzer
    import fiji.plugin.trackmate.util.TMUtils as TMUtils
    import fiji.plugin.trackmate.visualization.trackscheme.TrackScheme as TrackScheme
    import fiji.plugin.trackmate.visualization.PerTrackFeatureColorGenerator as PerTrackFeatureColorGenerator

    #-------------------------
    # Instantiate model object
    #-------------------------

    nFrames = imp.getNFrames()
    model = Model()

    # Set logger
    #model.setLogger(Logger.IJ_LOGGER)

    #------------------------
    # Prepare settings object
    #------------------------

    settings = Settings()
    settings.setFrom(imp)

    # Configure detector
    settings.detectorFactory = DogDetectorFactory()
    settings.detectorSettings = {
        DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION: True,
        DetectorKeys.KEY_RADIUS: 12.30,
        DetectorKeys.KEY_TARGET_CHANNEL: 1,
        DetectorKeys.KEY_THRESHOLD: 100.,
        DetectorKeys.KEY_DO_MEDIAN_FILTERING: False,
    }

    # Configure tracker
    settings.trackerFactory = SparseLAPTrackerFactory()
    settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap()
    settings.trackerSettings['LINKING_MAX_DISTANCE'] = 10.0
    settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 10.0
    settings.trackerSettings['MAX_FRAME_GAP'] = 3

    # Add the analyzers for some spot features.
    # You need to configure TrackMate with analyzers that will generate
    # the data you need.
    # Here we just add two analyzers for spot, one that computes generic
    # pixel intensity statistics (mean, max, etc...) and one that computes
    # an estimate of each spot's SNR.
    # The trick here is that the second one requires the first one to be in
    # place. Be aware of this kind of gotchas, and read the docs.
    settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory())
    settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory())

    # Add an analyzer for some track features, such as the track mean speed.
    settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer())

    settings.initialSpotFilterValue = 1

    print(str(settings))

    #----------------------
    # Instantiate trackmate
    #----------------------

    trackmate = TrackMate(model, settings)

    #------------
    # Execute all
    #------------

    ok = trackmate.checkInput()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    ok = trackmate.process()
    if not ok:
        sys.exit(str(trackmate.getErrorMessage()))

    #----------------
    # Display results
    #----------------

    selectionModel = SelectionModel(model)
    displayer = HyperStackDisplayer(model, selectionModel, imp)
    displayer.render()
    displayer.refresh()

    #---------------------
    # Select correct spots
    #---------------------

    # Prepare display.
    sm = SelectionModel(model)
    color = PerTrackFeatureColorGenerator(model, 'TRACK_INDEX')

    # launch TrackScheme to select spots and tracks
    trackscheme = TrackScheme(model, sm)
    trackscheme.setDisplaySettings('TrackColoring', color)
    trackscheme.render()

    # Update image with TrackScheme commands
    view = HyperStackDisplayer(model, sm, imp)
    view.setDisplaySettings('TrackColoring', color)
    view.render()

    # Wait for the user to select correct spots and tracks before collecting data
    dialog = WaitForUserDialog(
        "Spots",
        "Delete incorrect spots and edit tracks if necessary. (Press ESC to cancel analysis)"
    )
    dialog.show()
    if dialog.escPressed():
        IJ.run("Remove Overlay", "")
        imp.close()
        return ([], nFrames)

    # The feature model, that stores edge and track features.
    #model.getLogger().log('Found ' + str(model.getTrackModel().nTracks(True)) + ' tracks.')
    fm = model.getFeatureModel()
    crds_perSpot = []
    for id in model.getTrackModel().trackIDs(True):

        # Fetch the track feature from the feature model.(remove """ to enable)
        """v = fm.getTrackFeature(id, 'TRACK_MEAN_SPEED')
	    model.getLogger().log('')
	    model.getLogger().log('Track ' + str(id) + ': mean velocity = ' + str(v) + ' ' + model.getSpaceUnits() + '/' + model.getTimeUnits())"""
        trackID = str(id)
        track = model.getTrackModel().trackSpots(id)

        spot_track = {}
        for spot in track:
            sid = spot.ID()
            # Fetch spot features directly from spot.
            x = spot.getFeature('POSITION_X')
            y = spot.getFeature('POSITION_Y')
            t = spot.getFeature('FRAME')
            q = spot.getFeature('QUALITY')
            snr = spot.getFeature('SNR')
            mean = spot.getFeature('MEAN_INTENSITY')
            #model.getLogger().log('\tspot ID = ' + str(sid) + ', x='+str(x)+', y='+str(y)+', t='+str(t)+', q='+str(q) + ', snr='+str(snr) + ', mean = ' + str(mean))
            spot_track[t] = (x, y)
        crds_perSpot.append(spot_track)
        #print ("Spot", crds_perSpot.index(spot_track),"has the following coordinates:", crds_perSpot[crds_perSpot.index(spot_track)])
    return (crds_perSpot, nFrames)
예제 #40
0
#----------------------------

# Some of the parameters we configure below need to have
# a reference to the model at creation. So we create an
# empty model now.

model = Model()

# Send all messages to ImageJ log window.
model.setLogger(Logger.IJ_LOGGER)

#------------------------
# Prepare settings object
#------------------------

settings = Settings()
settings.setFrom(imp)

#Take the rest of the settings from a xml file.
file = File(
    "D:\\uni\\TFG\\TrackingImageJInfo\\ScriptingWithPy\\TrackFilterAfter.xml")

# We have to feed a logger to the reader.
logger = Logger.IJ_LOGGER

#-------------------
# Instantiate reader
#-------------------

reader = TmXmlReader(file)
if not reader.isReadingOk():
예제 #41
0
from fiji.plugin.trackmate import Logger
from fiji.plugin.trackmate.detection import LogDetectorFactory
import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as HyperStackDisplayer
import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter

from ij import WindowManager

import sys
  
imp = WindowManager.getCurrentImage()
imp.show()
   
model = Model()
model.setLogger(Logger.IJ_LOGGER)
      
settings = Settings()
settings.setFrom(imp)

settings.detectorFactory = LogDetectorFactory()
settings.detectorSettings = { 
    'DO_SUBPIXEL_LOCALIZATION' : True,
    'RADIUS' : 0.22,
    'TARGET_CHANNEL' : 2,
    'THRESHOLD' : 0.,
    'DO_MEDIAN_FILTERING' : False,
}  

filter1 = FeatureFilter('QUALITY', 1, True)
settings.addSpotFilter(filter1)
 
trackmate = TrackMate(model, settings)