예제 #1
0
    def load(self, json_string: str, semantic_manager: 'SemanticsManager'):
        """
        Load the state of the registry out of a json string. The current
        state will be discarded

        Args:
            json_string (str): State expressed as json string
            semantic_manager (SemanticsManager): manager to which registry
                belongs
        Returns:
             None
        """
        self.clear()

        save = json.loads(json_string)
        for instance_dict in save['instances']:
            entity_json = instance_dict['entity']
            header = InstanceHeader.parse_raw(instance_dict['header'])

            context_entity = ContextEntity.parse_raw(entity_json)

            instance = semantic_manager._context_entity_to_semantic_class(
                context_entity, header)

            if instance_dict['old_state'] is not None:
                instance.old_state.state = \
                    ContextEntity.parse_raw(instance_dict['old_state'])

            self._registry[instance.get_identifier()] = instance

        for identifier in save['deleted_identifiers']:
            self._deleted_identifiers.append(
                InstanceIdentifier.parse_raw(identifier))
예제 #2
0
    def test__16_save_and_load_local_state(self):
        """
        Test if the local state can be correctly saved as json and loaded again
        """
        from tests.semantics.models2 import Class3, Class1, semantic_manager

        new_header = InstanceHeader(cb_url=settings.CB_URL,
                                    iota_url=settings.IOTA_JSON_URL,
                                    service="testService",
                                    service_path=settings.FIWARE_SERVICEPATH)

        class3 = Class3(id="15", header=new_header)
        class3.commandProp.add(Command(name="c1"))
        class3.attributeProp.add(
            DeviceAttribute(name="_type",
                            attribute_type=DeviceAttributeType.active))

        class3.dataProp1.add("test")
        class3.device_settings.apikey = "ttt"
        class1 = Class1(id="11")
        class3.objProp2.add(class1)

        save = semantic_manager.save_local_state_as_json()
        semantic_manager.instance_registry.clear()

        semantic_manager.load_local_state_from_json(json=save)

        class3_ = Class3(id="15", header=new_header)
        class1_ = Class1(id="11")
        print(class3_)
        self.assertTrue("test" in class3_.dataProp1.get_all_raw())
        self.assertEqual(class3_.device_settings.dict(),
                         class3.device_settings.dict())
        self.assertEqual(class3_.commandProp.get_all()[0].name, "c1")
        self.assertEqual(class3_.attributeProp.get_all()[0].name, "_type")
        self.assertEqual(class3_.attributeProp.get_all()[0].attribute_type,
                         DeviceAttributeType.active)

        print(class3_.header)
        self.assertEqual(class3_.header.service, "testService")

        added_class = [
            c for c in class3_.objProp2.get_all()
            if isinstance(c, SemanticClass)
        ][0]
        self.assertTrue(added_class.id == "11")
        self.assertTrue(added_class.get_type() == class1.get_type())

        self.assertTrue(class1_.references == class1.references)
예제 #3
0
    def test_2_default_header(self):
        """
        Test if a new class without header gets teh default header
        """
        from tests.semantics.models import Class1, semantic_manager

        test_header = InstanceHeader(cb_url=settings.CB_URL,
                                     iota_url=settings.IOTA_JSON_URL,
                                     service=settings.FIWARE_SERVICE,
                                     service_path=settings.FIWARE_SERVICEPATH)
        semantic_manager.set_default_header(test_header)

        class1 = Class1()

        self.assertEqual(class1.header, test_header)
예제 #4
0
    def test__12_device_creation(self):
        """
        Test if a device is correctly instantiated
        And the settings can be set
        """
        from tests.semantics.models2 import Class3, semantic_manager
        test_header = InstanceHeader(cb_url=settings.CB_URL,
                                     iota_url=settings.IOTA_JSON_URL,
                                     service=settings.FIWARE_SERVICE,
                                     service_path=settings.FIWARE_SERVICEPATH)
        semantic_manager.set_default_header(test_header)

        class3_ = Class3()
        class3_.device_settings.endpoint = "http://test.com"
        self.assertEqual(class3_.device_settings.endpoint, "http://test.com")
예제 #5
0
    def get_iota_client(instance_header: InstanceHeader) -> IoTAClient:
        """Get the correct IotaClient to be used with the given header

        Args:
            instance_header (InstanceHeader): Header to be used with client
        Returns:
            IoTAClient
        """
        if instance_header.ngsi_version == NgsiVersion.v2:
            return IoTAClient(
                url=instance_header.iota_url,
                fiware_header=instance_header.get_fiware_header())
        else:
            # todo LD
            raise Exception("FiwareVersion not yet supported")
예제 #6
0
    def get_client(instance_header: InstanceHeader) \
            -> ContextBrokerClient:
        """Get the correct ContextBrokerClient to be used with the given header

        Args:
            instance_header (InstanceHeader): Header to be used with client
        Returns:
            ContextBrokerClient
        """
        if instance_header.ngsi_version == NgsiVersion.v2:
            return ContextBrokerClient(
                url=instance_header.cb_url,
                fiware_header=instance_header.get_fiware_header())
        else:
            # todo LD
            raise Exception("FiwareVersion not yet supported")
예제 #7
0
    #               -   ngsi_version: States if Fiware v2 or LD is used
    #               -   service: multi-tenancy space used in Fiware
    #               -   service-path: subpath in the multi-tenancy
    #
    # More details about the uniqueness later

    # ## 2.1 Instantiating a class
    #
    # We can create an instance of a class by simply instantiating and
    # passing the id and header as parameters.
    from filip.semantics.semantics_models import InstanceHeader
    from filip.models.base import NgsiVersion

    header = InstanceHeader(cb_url=cb_url,
                            iota_url=iota_url,
                            ngsi_version=NgsiVersion.v2,
                            service="example",
                            service_path="/")

    my_floor = Floor(id="my-first-floor", header=header)

    # If we work with the often with the same header we can also set a
    # default header in the semantic_manager. If a class without a header
    # parameter is created it gets automatically assigned this default header.

    semantic_manager.set_default_header(header)
    my_building = Building(id="building1")

    # ## 2.2 Immutability
    #
    # These defining information of an instance are immutable and can not
예제 #8
0
    def load_instances_from_fiware(
        self,
        fiware_header: FiwareHeader,
        fiware_version: NgsiVersion,
        cb_url: str,
        iota_url: str,
        entity_ids: Optional[List[str]] = None,
        entity_types: Optional[List[str]] = None,
        id_pattern: str = None,
        type_pattern: str = None,
        q: Union[str, QueryString] = None,
        limit: int = inf,
    ) -> List[SemanticClass]:
        """
        Loads the instances of given types or ids from Fiware into the local
        state and returns the loaded instances

        Args:
            fiware_header (FiwareHeader): Fiware location to load
            fiware_version (NgsiVersion): Used fiware version
            cb_url (str): URL of the ContextBroker
            iota_url (str): URL of the IotaBroker
            entity_ids (Optional[str]): List of the entities ids that
                should be loaded
            entity_types (Optional[str]): List of the entities types that
                should be loaded
            id_pattern: A correctly formatted regular expression. Retrieve
                entities whose ID matches the regular expression. Incompatible
                with id, e.g. ngsi-ld.* or sensor.*
            type_pattern: A correctly formatted regular expression. Retrieve
                entities whose type matches the regular expression.
                Incompatible with type, e.g. room.*
            q (SimpleQuery): A query expression, composed of a list of
                statements separated by ;, i.e.,
                q=statement1;statement2;statement3. See Simple Query
                Language specification. Example: temperature>40.
            limit: Limits the number of entities to be retrieved Example: 20

        Raises:
           ValueError: if both entity_types and entity_ids are given
           ValueError: if Retrival of Context-entities fails
        Returns:
             List[SemanticClass]
        """

        header: InstanceHeader = InstanceHeader(
            service=fiware_header.service,
            service_path=fiware_header.service_path,
            cb_url=cb_url,
            iota_url=iota_url,
            ngsi_version=fiware_version)

        client = self.get_client(header)

        entities = client.get_entity_list(entity_ids=entity_ids,
                                          entity_types=entity_types,
                                          id_pattern=id_pattern,
                                          type_pattern=type_pattern,
                                          q=q,
                                          limit=limit)
        client.close()

        return [
            self._context_entity_to_semantic_class(e, header) for e in entities
        ]
예제 #9
0
class SemanticsManager(BaseModel):
    """
    The Semantic Manager is a static object that is delivered with
    each vocabulary model export.

    It provides the interface to interact with the local state and Fiware
    """

    instance_registry: InstanceRegistry = Field(
        description="Registry managing the local state")
    class_catalogue: Dict[str, Type[SemanticClass]] = Field(
        default={}, description="Register of class names to classes")
    datatype_catalogue: Dict[str, Dict[str, str]] = Field(
        default={},
        description="Register of datatype names to Dict representation of "
        "datatypes")
    individual_catalogue: Dict[str, type] = Field(
        default={},
        description="Register of individual names to their classes")

    default_header: InstanceHeader = Field(
        default=InstanceHeader(),
        description="Default header that each new instance receives if it "
        "does not specify an own header")

    @staticmethod
    def get_client(instance_header: InstanceHeader) \
            -> ContextBrokerClient:
        """Get the correct ContextBrokerClient to be used with the given header

        Args:
            instance_header (InstanceHeader): Header to be used with client
        Returns:
            ContextBrokerClient
        """
        if instance_header.ngsi_version == NgsiVersion.v2:
            return ContextBrokerClient(
                url=instance_header.cb_url,
                fiware_header=instance_header.get_fiware_header())
        else:
            # todo LD
            raise Exception("FiwareVersion not yet supported")

    @staticmethod
    def get_iota_client(instance_header: InstanceHeader) -> IoTAClient:
        """Get the correct IotaClient to be used with the given header

        Args:
            instance_header (InstanceHeader): Header to be used with client
        Returns:
            IoTAClient
        """
        if instance_header.ngsi_version == NgsiVersion.v2:
            return IoTAClient(
                url=instance_header.iota_url,
                fiware_header=instance_header.get_fiware_header())
        else:
            # todo LD
            raise Exception("FiwareVersion not yet supported")

    def _context_entity_to_semantic_class(
            self, entity: ContextEntity,
            header: InstanceHeader) -> SemanticClass:
        """Converts a ContextEntity to a SemanticClass

        Args:
            entity (ContextEntity): entity to convert
            header (InstanceHeader): Header of the new instance

        Returns:
            SemanticClass or SemanticDeviceClass
        """

        class_name = entity.type

        class_: Type = self.get_class_by_name(class_name)

        if not self.is_class_name_an_device_class(class_name):

            loaded_class: SemanticClass = class_(id=entity.id,
                                                 header=header,
                                                 enforce_new=True)
        else:
            loaded_class: SemanticDeviceClass = class_(id=entity.id,
                                                       header=header,
                                                       enforce_new=True)

        loaded_class.old_state.state = entity

        # load values of class from the context_entity into the instance
        for field in loaded_class.get_fields():
            field.clear()  # remove default values, from hasValue relations
            field_name = field.name
            entity_attribute = entity.get_attribute(field_name)
            if entity_attribute is None:
                raise Exception(
                    f"The corresponding entity for ({entity.id},{entity.type}) "
                    f"in Fiware misses a field that "
                    f"is required by the class_model: {field_name}. The "
                    f"fiware state and the used vocabulary models are not "
                    f"compatible")

            entity_field_value = entity.get_attribute(field_name).value

            if isinstance(entity_field_value, List):
                values = entity_field_value
            else:
                values = [entity_field_value]

            for value in values:
                converted_value = self._convert_value_fitting_for_field(
                    field, value)
                if isinstance(field, RelationField):
                    # we need to bypass the main setter, as it expects an
                    # instance and we do not want to load the instance if it
                    # is not used
                    field._set.add(converted_value)
                else:
                    field.add(converted_value)

        # load references into instance
        references_attribute = entity.get_attribute("referencedBy")
        references = references_attribute.value

        for identifier_str, prop_list in references.items():
            for prop in prop_list:
                loaded_class.add_reference(
                    InstanceIdentifier.parse_raw(
                        identifier_str.replace("---", ".")), prop)

        # load metadata
        metadata_dict = entity.get_attribute("metadata").value
        loaded_class.metadata.name = metadata_dict['name']
        loaded_class.metadata.comment = metadata_dict['comment']

        # load device_settings into instance, if instance is a device
        if isinstance(loaded_class, SemanticDeviceClass):
            settings_attribute = entity.get_attribute("deviceSettings")
            device_settings = DeviceSettings.parse_obj(
                settings_attribute.value)

            for key, value in device_settings.dict().items():
                loaded_class.device_settings.__setattr__(key, value)

        return loaded_class

    @staticmethod
    def _convert_value_fitting_for_field(field, value):
        """
        Converts a given value into the correct format for the given field

        Args:
            field: SemanticField
            value: Value to convert

        Returns:
            converted value
        """
        if isinstance(field, DataField):
            return value
        elif isinstance(field, RelationField):
            # convert json to Identifier, inject identifier in Relation,
            # the class will be hotloaded if the value in the is
            # relationship is accessed

            if not isinstance(value, dict):  # is an individual
                return value
            else:  # is an instance_identifier
                # we need to replace back --- with . that we switched,
                # as a . is not allowed in the dic in Fiware
                return InstanceIdentifier.parse_raw(
                    str(value).replace("---", ".").replace("'", '"'))

        elif isinstance(field, CommandField):
            if isinstance(value, Command):
                return value
            # if loading local state, the wrong string delimters are used,
            # and the string is not automatically converted to a dict
            if not isinstance(value, dict):
                value = json.loads(value.replace("'", '"'))

            return Command(name=value['name'])
        elif isinstance(field, DeviceAttributeField):

            # if loading local state, the wrong string delimters are used,
            # and the string is not automatically converted to a dict

            if isinstance(value, DeviceAttribute):
                return value
            if not isinstance(value, dict):
                value = json.loads(value.replace("'", '"'))

            return DeviceAttribute(name=value['name'],
                                   attribute_type=value["attribute_type"])

    def get_class_by_name(self, class_name: str) -> Type[SemanticClass]:
        """
        Get the class object by its type in string form

        Args:
            class_name (str)

        Raises:
            KeyError: if class_name not registered as a SemanticClass

        Returns:
            Type
        """
        return self.class_catalogue[class_name]

    def is_class_name_an_device_class(self, class_name: str) -> bool:
        """
        Test if the name/type of a class belongs to a SemanticDeviceClass

        Args:
            class_name (str): class name to check

        Returns:
            bool, True if belongs to a SemanticDeviceClass
        """
        class_type = self.get_class_by_name(class_name)
        return isinstance(class_type, SemanticDeviceClass)

    def is_local_state_valid(self, validate_rules: bool = True) -> (bool, str):
        """
        Check if the local state is valid and can be saved.

        Args:
            validate_rules (bool): If true Rulefields are validated

        Returns:
            (bool, str): (Is valid?, Message)
        """

        if validate_rules:
            for instance in self.instance_registry.get_all():
                if isinstance(instance, Individual):
                    continue
                if not instance.are_rule_fields_valid():
                    return (
                        False, f"SemanticEntity {instance.id} of type"
                        f"{instance.get_type()} has unfulfilled fields "
                        f"{[f.name for f in instance.get_invalid_rule_fields()]}."
                    )

        for instance in self.instance_registry.get_all():
            if isinstance(instance, SemanticDeviceClass):
                if instance.device_settings.transport is None:
                    return (
                        False,
                        f"Device {instance.id} of type {instance.get_type()} "
                        f"needs to be given an transport setting.")
        return True, "State is valid"

    def save_state(self, assert_validity: bool = True):
        """
        Save the local state completely to Fiware.

        Args:
            assert_validity (bool): It true an error is raised if the
            RuleFields of one instance are invalid

        Raises:
            AssertionError: If a device endpoint or transport is not defined

        Returns:
            None
        """
        (valid,
         msg) = self.is_local_state_valid(validate_rules=assert_validity)

        if not valid:
            raise AssertionError(f"{msg}. Local state was not saved")

        # delete all instance that were loaded from Fiware and then deleted
        # wrap in try, as the entity could have been deleted by a third party
        for identifier in self.instance_registry.get_all_deleted_identifiers():

            # we need to handle devices and normal classes with different
            # clients

            client = self.get_client(instance_header=identifier.header)
            try:
                client.delete_entity(entity_id=identifier.id,
                                     entity_type=identifier.type,
                                     delete_devices=True)
            except requests.RequestException:
                pass

            client.close()

        # merge with live state
        for instance in self.instance_registry.get_all():
            self.merge_local_and_live_instance_state(instance)

        # save, patch all local instances
        for instance in self.instance_registry.get_all():
            if not isinstance(instance, SemanticDeviceClass):
                client = self.get_client(instance_header=instance.header)
                # it is important that we patch the values else the
                # references field would reach an invalid state if we worked
                # in parallel on an instance
                client.patch_entity(instance.build_context_entity(),
                                    instance.old_state.state)
                client.close()
            else:
                client = self.get_iota_client(instance_header=instance.header)
                client.patch_device(device=instance.build_context_device(),
                                    patch_entity=True,
                                    cb_url=instance.header.cb_url)

                client.close()

        # update old_state
        for instance in self.instance_registry.get_all():
            instance.old_state.state = instance.build_context_entity()

    def load_instance(self, identifier: InstanceIdentifier) -> SemanticClass:
        """
        Get the instance with the given identifier. It is either loaded from
        local state or retrieved from fiware

        Args:
            identifier (InstanceIdentifier): Identifier to load

        Returns:
            SemanticClass
        """

        if self.instance_registry.contains(identifier=identifier):
            return self.instance_registry.get(identifier=identifier)
        else:
            client = self.get_client(identifier.header)

            entity = client.get_entity(entity_id=identifier.id,
                                       entity_type=identifier.type)
            client.close()

            logger.info(f"Instance ({identifier.id}, {identifier.type}) "
                        f"loaded from Fiware({identifier.header.cb_url}"
                        f", {identifier.header.service}"
                        f"{identifier.header.service_path})")
            return self._context_entity_to_semantic_class(
                entity=entity, header=identifier.header)

    def does_instance_exists(self, identifier: InstanceIdentifier) -> bool:
        """
        Check if an instance with the given identifier already exists in
        local state or in Fiware

        Args:
            identifier (InstanceIdentifier): Identifier to check

        Returns:
            bool, true if exists
        """

        if self.instance_registry.contains(identifier=identifier):
            return True
        elif self.was_instance_deleted(identifier):
            return False
        else:
            client = self.get_client(identifier.header)
            return client.does_entity_exists(entity_id=identifier.id,
                                             entity_type=identifier.type)

    def was_instance_deleted(self, identifier: InstanceIdentifier) -> bool:
        """
        Check if the instance with the given identifier was deleted.

        Args:
            identifier (InstanceIdentifier): Identifier to check

        Returns:
            bool, true if deleted
        """
        return self.instance_registry.instance_was_deleted(identifier)

    def get_instance(self, identifier: InstanceIdentifier) -> SemanticClass:
        """
        Get the instance with the given identifier. It is either loaded from
        local state or retrieved from fiware

        Args:
            identifier (InstanceIdentifier): Identifier to load

        Returns:
            SemanticClass
        """
        return self.load_instance(identifier)

    def get_all_local_instances(self) -> List[SemanticClass]:
        """
        Retrieve all SemanticClass instances in the local state

        Returns:
            List[SemanticClass]
        """
        return self.instance_registry.get_all()

    def get_all_local_instances_of_class(self,
                                         class_: Optional[type] = None,
                                         class_name: Optional[str] = None,
                                         get_subclasses: bool = True) \
            -> List[SemanticClass]:
        """
        Retrieve all instances of a SemanitcClass from Local Storage

        Args:
            class_ (type):
                Type of classes to retrieve
            class_name (str):
                Name of type of classes to retrieve as string
            get_subclasses (bool):
                If true also all instances of subclasses
                of given class are returned

        Raises:
            AssertionError: If class_ and class_name are both None or non None

        Returns:
            List[SemanticClass]
        """

        assert class_ is None or class_name is None, \
            "Only one parameter is allowed"
        assert class_ is not None or class_name is not None, \
            "One parameter is required"

        if class_ is not None:
            class_name = class_.__name__
        else:
            class_ = self.get_class_by_name(class_name)

        res = []
        for instance in self.instance_registry.get_all():
            if not get_subclasses:
                if instance.get_type() == class_name:
                    res.append(instance)
            else:
                if isinstance(instance, class_):
                    res.append(instance)
        return res

    def load_instances_from_fiware(
        self,
        fiware_header: FiwareHeader,
        fiware_version: NgsiVersion,
        cb_url: str,
        iota_url: str,
        entity_ids: Optional[List[str]] = None,
        entity_types: Optional[List[str]] = None,
        id_pattern: str = None,
        type_pattern: str = None,
        q: Union[str, QueryString] = None,
        limit: int = inf,
    ) -> List[SemanticClass]:
        """
        Loads the instances of given types or ids from Fiware into the local
        state and returns the loaded instances

        Args:
            fiware_header (FiwareHeader): Fiware location to load
            fiware_version (NgsiVersion): Used fiware version
            cb_url (str): URL of the ContextBroker
            iota_url (str): URL of the IotaBroker
            entity_ids (Optional[str]): List of the entities ids that
                should be loaded
            entity_types (Optional[str]): List of the entities types that
                should be loaded
            id_pattern: A correctly formatted regular expression. Retrieve
                entities whose ID matches the regular expression. Incompatible
                with id, e.g. ngsi-ld.* or sensor.*
            type_pattern: A correctly formatted regular expression. Retrieve
                entities whose type matches the regular expression.
                Incompatible with type, e.g. room.*
            q (SimpleQuery): A query expression, composed of a list of
                statements separated by ;, i.e.,
                q=statement1;statement2;statement3. See Simple Query
                Language specification. Example: temperature>40.
            limit: Limits the number of entities to be retrieved Example: 20

        Raises:
           ValueError: if both entity_types and entity_ids are given
           ValueError: if Retrival of Context-entities fails
        Returns:
             List[SemanticClass]
        """

        header: InstanceHeader = InstanceHeader(
            service=fiware_header.service,
            service_path=fiware_header.service_path,
            cb_url=cb_url,
            iota_url=iota_url,
            ngsi_version=fiware_version)

        client = self.get_client(header)

        entities = client.get_entity_list(entity_ids=entity_ids,
                                          entity_types=entity_types,
                                          id_pattern=id_pattern,
                                          type_pattern=type_pattern,
                                          q=q,
                                          limit=limit)
        client.close()

        return [
            self._context_entity_to_semantic_class(e, header) for e in entities
        ]

    def get_entity_from_fiware(self, instance_identifier: InstanceIdentifier) \
            -> ContextEntity:
        """
        Retrieve the current entry of an instance in Fiware

        Args:
            instance_identifier (InstanceIdentifier): Identifier to load

        Raises:
            Exception, if Entity is not present

        Returns:
              ContextEntity
        """
        client = self.get_client(instance_identifier.header)

        return client.get_entity(entity_id=instance_identifier.id,
                                 entity_type=instance_identifier.type)

    def load_instances(
            self,
            identifiers: List[InstanceIdentifier]) -> List[SemanticClass]:
        """
        Load all instances, if no local state of it exists it will get taken
        from Fiware and registered locally

        Args:
            identifiers List[InstanceIdentifier]: Identifiers of instances
                that should be loaded
        Raises:
            Exception, if one Entity is not present

        Returns:
           List[SemanticClass]
        """

        return [self.load_instance(iden) for iden in identifiers]

    def set_default_header(self, header: InstanceHeader):
        """
        Set the default header, which all new instance that does not specify a
        header in the constructor receives

        Args:
            header (InstanceHeader): new default header

        Returns:
            None
        """
        self.default_header = copy.deepcopy(header)

    def get_default_header(self) -> InstanceHeader:
        """
        Instance header is read-only, therefore giving back a copy is
        theoretically not needed, but it is cleaner that all instance has an
        own header object that is not shared
        """
        return copy.deepcopy(self.default_header)

    def get_datatype(self, datatype_name: str) -> Datatype:
        """
        Get a Datatype object with the name as key as specified in the model

        Args:
            datatype_name (str): key label of the datatype

        Returns:
            Datatype
        """
        return Datatype.parse_obj(self.datatype_catalogue[datatype_name])

    def get_individual(self, individual_name: str) -> SemanticIndividual:
        """
        Get an individual by its name

        Args:
            individual_name (str)
        Raises:
            KeyError, if name not registered
        Returns:
            SemanticIndividual
        """
        return self.individual_catalogue[individual_name]()

    def save_local_state_as_json(self) -> str:
        """
        Save the local state with all made changes as json string

        Returns:
            Json String, containing all information about the local state
        """
        return self.instance_registry.save()

    def load_local_state_from_json(self, json: str):
        """
        Loads the local state from a json string. The current local state gets
        discarded

        Raises:
            Error, if not a correct json string

        """
        self.instance_registry.load(json, self)

    def visualize_local_state(self, display_individuals_rule: str = "ALL"):
        """
        Visualise all instances in the local state in a network graph that
        shows which instances reference each other over which fields

        On execution of the methode a temporary image file is created and
        automatically displayed in the standard image viewing software of the
        system

        Args:
            display_individuals_rule (rule):
                If:
                "USED": Show only Individuals
                "ALL": Display all known Individuals
                "NONE": Display no Individuals
                that are connected to at least one instance
                else: Show all individuals

        Raises:
            ValueError: if display_individuals_rule is invalid
        """

        if not display_individuals_rule == "ALL" and \
            not display_individuals_rule == "NONE" and \
            not display_individuals_rule == "USED":

            raise ValueError(f"Invalid parameter {display_individuals_rule}")

        import igraph
        g = igraph.Graph(directed=True)

        for instance in self.get_all_local_instances():
            g.add_vertex(
                name=instance.id,
                label=f"\n\n\n {instance.get_type()} \n {instance.id}",
                color="green")

        used_individuals_names: Set[str] = set()
        for instance in self.get_all_local_instances():
            for field in instance.get_relation_fields():
                for linked in field.get_all():
                    if isinstance(linked, SemanticClass):
                        g.add_edge(instance.id, linked.id, name=field.name)
                        # g.es[-1]["name"] = field.name

                    elif isinstance(linked, SemanticIndividual):
                        if not display_individuals_rule == "NONE":
                            g.add_edge(instance.id, linked.get_name())
                            used_individuals_names.add(linked.get_name())

        if display_individuals_rule == "ALL":
            used_individuals_names.update(self.individual_catalogue.keys())
        for individual in [
                self.get_individual(name) for name in used_individuals_names
        ]:
            g.add_vertex(label=f"\n\n\n{individual.get_name()}",
                         name=individual.get_name(),
                         color="blue")

        layout = g.layout("fr")
        visual_style = {
            "vertex_size": 20,
            "vertex_color": g.vs["color"],
            "vertex_label": g.vs["label"],
            "edge_label": g.es["name"],
            "layout": layout,
            "bbox": (len(g.vs) * 50, len(g.vs) * 50)
        }

        igraph.plot(g, **visual_style)

    def generate_cytoscape_for_local_state(
            self, display_only_used_individuals: bool = True):
        """
        Generate a graph definition that can be loaded into a cytoscape
        visualisation tool, that describes the complete current local state.

        For the graph layout COLA is recommended with an edge length of 150

        Args:
            display_only_used_individuals (bool):
                If true(default): Show only Individuals that are connected to
                at least one instance
                else: Show all individuals

        Returns:
            Tupel of elements and stylesheet:
                elements is a dict:
                {"nodes": NODE_DEFINITIONS, "edges": EDGE_DEFINITIONS}
                stylesheet is a list containing all the graph styles
        """

        # graph design
        stylesheet = [{
            'selector': 'node',
            'style': {
                'label': 'data(label)',
                'z-index': 9999
            }
        }, {
            'selector': 'edge',
            'style': {
                'curve-style': 'bezier',
                'target-arrow-color': 'black',
                'target-arrow-shape': 'triangle',
                'line-color': 'black',
                "opacity": 0.45,
                'z-index': 5000,
            }
        }, {
            'selector': '.center',
            'style': {
                'shape': 'rectangle',
                'background-color': 'black'
            }
        }, {
            'selector': '.individual',
            'style': {
                'shape': 'circle',
                'background-color': 'orange'
            }
        }, {
            'selector': '.instance',
            'style': {
                'shape': 'circle',
                'background-color': 'green'
            }
        }, {
            'selector': '.collection',
            'style': {
                'shape': 'triangle',
                'background-color': 'gray'
            }
        }]

        nodes = []
        edges = []

        used_individual_names = set()
        if not display_only_used_individuals:
            used_individual_names.update(self.individual_catalogue.keys())

        def get_node_id(item: Union[SemanticClass, SemanticIndividual]) -> str:
            """
            Get the id to be used in the graph for an item

            Args:
                item (Union[SemanticClass, SemanticIndividual]): Item to get
                                                                    ID for

            Returns:
                str - ID
            """
            if isinstance(item, SemanticIndividual):
                return item.get_name()
            else:
                return item.get_identifier().json()

        for instance in self.get_all_local_instances():
            label = f'({instance.get_type()}){instance.metadata.name}'
            nodes.append({
                'data': {
                    'id': get_node_id(instance),
                    'label': label,
                    'parent_id': '',
                    'classes': "instance item"
                },
                'classes': "instance item"
            })

        for instance in self.get_all_local_instances():

            for rel_field in instance.get_relation_fields():

                values = rel_field.get_all()
                for v in values:
                    if isinstance(v, SemanticIndividual):
                        used_individual_names.add(v.get_name())

                if len(values) == 0:
                    pass
                elif len(values) == 1:
                    edge_id = uuid.uuid4().hex
                    edges.append({
                        'data': {
                            'id': edge_id,
                            'source': get_node_id(instance),
                            'target': get_node_id(values[0])
                        }
                    })
                    edge_name = rel_field.name
                    stylesheet.append({
                        'selector': '#' + edge_id,
                        'style': {
                            'label': edge_name
                        }
                    })
                else:
                    edge_id = uuid.uuid4().hex
                    node_id = uuid.uuid4().hex
                    nodes.append({
                        'data': {
                            'id': node_id,
                            'label': '',
                            'parent_id': '',
                            'classes': "collection"
                        },
                        'classes': "collection"
                    })

                    edges.append({
                        'data': {
                            'id': edge_id,
                            'source': get_node_id(instance),
                            'target': node_id
                        }
                    })
                    edge_name = rel_field.name
                    stylesheet.append({
                        'selector': '#' + edge_id,
                        'style': {
                            'label': edge_name
                        }
                    })

                    for value in values:
                        edge_id = uuid.uuid4().hex
                        edges.append({
                            'data': {
                                'id': edge_id,
                                'source': node_id,
                                'target': get_node_id(value)
                            }
                        })

        for individual_name in used_individual_names:
            nodes.append({
                'data': {
                    'id': individual_name,
                    'label': individual_name,
                    'parent_id': '',
                    'classes': "individual item"
                },
                'classes': "individual item"
            })

        elements = {'nodes': nodes, 'edges': edges}

        return elements, stylesheet

    def merge_local_and_live_instance_state(self, instance: SemanticClass) ->\
            None:
        """
        The live state of the instance is fetched from Fiware (if it exists)
        and the two states are merged:

        For each Field:
        - each added value (compared to old_state) is added to
        the live state
        - each deleted value (compared to old_state) is removed from
        the live state

        For each Device Settings (if instance is device):
        - If the device setting changed (compared to old_state) the live
        setting is overwritten

        For each Reference:
        - each added value (compared to old_state) is added to
        the live state
        - each deleted value (compared to old_state) is removed from
        the live state

        The new state is directly saved in the instance

        Args:
              instance (SemanticClass): instanced to be treated
        """
        def converted_attribute_values(field, attribute) -> Set:
            return {
                self._convert_value_fitting_for_field(field, value)
                for value in attribute.value
            }

        def _get_added_and_removed_values(
                old_values: Union[List, Set, Any],
                current_values: Union[List, Set, Any]) -> (Set, Set):

            old_set = set(old_values)
            current_set = set(current_values)
            added_values = set()
            removed_values = set()

            # remove deleted values from live state, it can be that the value
            # was also deleted in the live state
            for value in old_set:
                if value not in current_set:
                    removed_values.add(value)

            # add added values
            for value in current_set:
                if value not in old_set:
                    added_values.add(value)

            return added_values, removed_values

        # instance is new. Save it as is
        client = self.get_client(instance.header)
        if not client.does_entity_exists(entity_id=instance.id,
                                         entity_type=instance.get_type()):
            return

        client = self.get_client(instance.header)
        live_entity = client.get_entity(entity_id=instance.id,
                                        entity_type=instance.get_type())
        client.close()

        current_entity = instance.build_context_entity()
        old_entity = instance.old_state.state

        # ------merge fields-----------------------------------------------
        # instance exists already, add all locally added and delete all
        # locally deleted values to the/from the live_state

        for field in instance.get_fields():
            # live_values = set(live_entity.get_attribute(field.name).value)
            live_values = converted_attribute_values(
                field, live_entity.get_attribute(field.name))
            old_values = converted_attribute_values(
                field, old_entity.get_attribute(field.name))
            current_values = converted_attribute_values(
                field, current_entity.get_attribute(field.name))

            (added_values, deleted_values) = \
                _get_added_and_removed_values(
                    old_values, current_values
                    # old_entity.get_attribute(field.name).value,
                    # current_entity.get_attribute(field.name).value
                )

            for value in added_values:
                live_values.add(value)
            for value in deleted_values:
                if value in live_values:
                    live_values.remove(value)

            new_values = list(live_values)
            # update local stated with merged result
            field._set.clear()  # very important to not use field.clear,
            # as that methode would also delete references
            for value in new_values:
                converted_value = self._convert_value_fitting_for_field(
                    field, value)
                field._set.add(converted_value)

        # ------merge references-----------------------------------------------
        merged_references: Dict = live_entity.get_attribute(
            "referencedBy").value
        current_references: Dict = current_entity.get_attribute(
            "referencedBy").value
        old_references: Dict = old_entity.get_attribute("referencedBy").value

        keys = set(current_references.keys())
        keys.update(old_references.keys())

        for key in keys:
            current_values = []
            old_values = []
            if key in current_references:
                current_values = current_references[key]
            if key in old_references:
                old_values = old_references[key]

            (added_values, deleted_values) = _get_added_and_removed_values(
                current_values=current_values, old_values=old_values)

            # ensure the merged state has each key
            if key not in merged_references.keys():
                merged_references[key] = []

            # add, added values that did not exist before
            for value in added_values:
                if value not in merged_references[key]:
                    merged_references[key].append(value)

            # delete deleted values if they were not already deleted
            for value in deleted_values:
                if value in merged_references[key]:
                    merged_references[key].remove(value)

            # delete all keys that point to empty lists
            keys_to_delete = []
            for key, value in merged_references.items():
                if len(value) == 0:
                    keys_to_delete.append(key)
            for key in keys_to_delete:
                del merged_references[key]

        # save merged references
        instance.references.clear()
        for key, value in merged_references.items():
            # replace back the protected . (. not allowed in keys in fiware)
            instance.references[InstanceIdentifier.parse_raw(
                key.replace("---", "."))] = value

        # ------merge device settings----------------------------------------
        if isinstance(instance, SemanticDeviceClass):
            old_settings = old_entity.get_attribute("deviceSettings").value
            current_settings = \
                current_entity.get_attribute("deviceSettings").value
            new_settings = live_entity.get_attribute("deviceSettings").value

            # keys are always the same
            # override live state with local changes
            for key in old_settings:
                if old_settings[key] is not current_settings[key]:
                    new_settings[key] = current_settings[key]
                instance.device_settings.__setattr__(key, new_settings[key])

    def find_fitting_model(self,
                           search_term: str,
                           limit: int = 5) -> List[str]:
        """
        Find a fitting model by entering a search_term (e.g.: Sensor).
        The methode returns a selection from up-to [limit] possibly fitting
        model names. If a model name was selected from the proposition the
        model can be retrieved with the methode:
        "get_class_by_name(selectedName)"

        Args:
            search_term (str): search term to find a model by name
            limit (int): Max Number of suggested results (default: 5)

        Returns:
            List[str], containing 0 to [limit] ordered propositions (best first)
        """
        class_names = list(self.class_catalogue.keys())
        suggestions = [
            item[0] for item in process.extract(query=search_term.casefold(),
                                                choices=class_names,
                                                score_cutoff=50,
                                                limit=limit)
        ]

        return suggestions