def do_volume_mrk02(ref_data): """ data - projections (scattered between cpus) or the volume. If volume, just do the volume processing options - the same for all cpus return - volume the same for all cpus """ from EMAN2 import Util from mpi import mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD from filter import filt_table from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import bcast_EMData_to_all, bcast_number_to_all, model_blank from fundamentals import rops_table, fftip, fft import types # Retrieve the function specific input arguments from ref_data data = ref_data[0] Tracker = ref_data[1] iter = ref_data[2] mpi_comm = ref_data[3] # # For DEBUG # print "Type of data %s" % (type(data)) # print "Type of Tracker %s" % (type(Tracker)) # print "Type of iter %s" % (type(iter)) # print "Type of mpi_comm %s" % (type(mpi_comm)) if(mpi_comm == None): mpi_comm = MPI_COMM_WORLD myid = mpi_comm_rank(mpi_comm) nproc = mpi_comm_size(mpi_comm) try: local_filter = Tracker["local_filter"] except: local_filter = False #========================================================================= # volume reconstruction if( type(data) == types.ListType ): if Tracker["constants"]["CTF"]: vol = recons3d_4nn_ctf_MPI(myid, data, Tracker["constants"]["snr"], \ symmetry=Tracker["constants"]["sym"], npad=Tracker["constants"]["npad"], mpi_comm=mpi_comm, smearstep = Tracker["smearstep"]) else: vol = recons3d_4nn_MPI (myid, data,\ symmetry=Tracker["constants"]["sym"], npad=Tracker["constants"]["npad"], mpi_comm=mpi_comm) else: vol = data if myid == 0: from morphology import threshold from filter import filt_tanl, filt_btwl from utilities import model_circle, get_im import types nx = vol.get_xsize() if(Tracker["constants"]["mask3D"] == None): mask3D = model_circle(int(Tracker["constants"]["radius"]*float(nx)/float(Tracker["constants"]["nnxo"])+0.5), nx, nx, nx) elif(Tracker["constants"]["mask3D"] == "auto"): from utilities import adaptive_mask mask3D = adaptive_mask(vol) else: if( type(Tracker["constants"]["mask3D"]) == types.StringType ): mask3D = get_im(Tracker["constants"]["mask3D"]) else: mask3D = (Tracker["constants"]["mask3D"]).copy() nxm = mask3D.get_xsize() if( nx != nxm): from fundamentals import rot_shift3D mask3D = Util.window(rot_shift3D(mask3D,scale=float(nx)/float(nxm)),nx,nx,nx) nxm = mask3D.get_xsize() assert(nx == nxm) stat = Util.infomask(vol, mask3D, False) vol -= stat[0] Util.mul_scalar(vol, 1.0/stat[1]) vol = threshold(vol) Util.mul_img(vol, mask3D) if( Tracker["PWadjustment"] ): from utilities import read_text_file, write_text_file rt = read_text_file( Tracker["PWadjustment"] ) fftip(vol) ro = rops_table(vol) # Here unless I am mistaken it is enough to take the beginning of the reference pw. for i in xrange(1,len(ro)): ro[i] = (rt[i]/ro[i])**Tracker["upscale"] #write_text_file(rops_table(filt_table( vol, ro),1),"foo.txt") if Tracker["constants"]["sausage"]: ny = vol.get_ysize() y = float(ny) from math import exp for i in xrange(len(ro)): ro[i] *= \ (1.0+1.0*exp(-(((i/y/Tracker["constants"]["pixel_size"])-0.10)/0.025)**2)+1.0*exp(-(((i/y/Tracker["constants"]["pixel_size"])-0.215)/0.025)**2)) if local_filter: # skip low-pass filtration vol = fft( filt_table( vol, ro) ) else: if( type(Tracker["lowpass"]) == types.ListType ): vol = fft( filt_table( filt_table(vol, Tracker["lowpass"]), ro) ) else: vol = fft( filt_table( filt_tanl(vol, Tracker["lowpass"], Tracker["falloff"]), ro) ) del ro else: if Tracker["constants"]["sausage"]: ny = vol.get_ysize() y = float(ny) ro = [0.0]*(ny//2+2) from math import exp for i in xrange(len(ro)): ro[i] = \ (1.0+1.0*exp(-(((i/y/Tracker["constants"]["pixel_size"])-0.10)/0.025)**2)+1.0*exp(-(((i/y/Tracker["constants"]["pixel_size"])-0.215)/0.025)**2)) fftip(vol) filt_table(vol, ro) del ro if not local_filter: if( type(Tracker["lowpass"]) == types.ListType ): vol = filt_table(vol, Tracker["lowpass"]) else: vol = filt_tanl(vol, Tracker["lowpass"], Tracker["falloff"]) if Tracker["constants"]["sausage"]: vol = fft(vol) if local_filter: from morphology import binarize if(myid == 0): nx = mask3D.get_xsize() else: nx = 0 nx = bcast_number_to_all(nx, source_node = 0) # only main processor needs the two input volumes if(myid == 0): mask = binarize(mask3D, 0.5) locres = get_im(Tracker["local_filter"]) lx = locres.get_xsize() if(lx != nx): if(lx < nx): from fundamentals import fdecimate, rot_shift3D mask = Util.window(rot_shift3D(mask,scale=float(lx)/float(nx)),lx,lx,lx) vol = fdecimate(vol, lx,lx,lx) else: ERROR("local filter cannot be larger than input volume","user function",1) stat = Util.infomask(vol, mask, False) vol -= stat[0] Util.mul_scalar(vol, 1.0/stat[1]) else: lx = 0 locres = model_blank(1,1,1) vol = model_blank(1,1,1) lx = bcast_number_to_all(lx, source_node = 0) if( myid != 0 ): mask = model_blank(lx,lx,lx) bcast_EMData_to_all(mask, myid, 0, comm=mpi_comm) from filter import filterlocal vol = filterlocal( locres, vol, mask, Tracker["falloff"], myid, 0, nproc) if myid == 0: if(lx < nx): from fundamentals import fpol vol = fpol(vol, nx,nx,nx) vol = threshold(vol) vol = filt_btwl(vol, 0.38, 0.5)# This will have to be corrected. Util.mul_img(vol, mask3D) del mask3D # vol.write_image('toto%03d.hdf'%iter) else: vol = model_blank(nx,nx,nx) else: if myid == 0: #from utilities import write_text_file #write_text_file(rops_table(vol,1),"goo.txt") stat = Util.infomask(vol, mask3D, False) vol -= stat[0] Util.mul_scalar(vol, 1.0/stat[1]) vol = threshold(vol) vol = filt_btwl(vol, 0.38, 0.5)# This will have to be corrected. Util.mul_img(vol, mask3D) del mask3D # vol.write_image('toto%03d.hdf'%iter) # broadcast volume bcast_EMData_to_all(vol, myid, 0, comm=mpi_comm) #========================================================================= return vol
def do_volume_mrk03(ref_data): """ data - projections (scattered between cpus) or the volume. If volume, just do the volume processing options - the same for all cpus return - volume the same for all cpus """ from EMAN2 import Util from mpi import mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD from filter import filt_table from reconstruction import recons3d_4nn_MPI, recons3d_4nnw_MPI # recons3d_4nn_ctf_MPI from utilities import bcast_EMData_to_all, bcast_number_to_all, model_blank from fundamentals import rops_table, fftip, fft import types # Retrieve the function specific input arguments from ref_data data = ref_data[0] Tracker = ref_data[1] iter = ref_data[2] mpi_comm = ref_data[3] # # For DEBUG # print "Type of data %s" % (type(data)) # print "Type of Tracker %s" % (type(Tracker)) # print "Type of iter %s" % (type(iter)) # print "Type of mpi_comm %s" % (type(mpi_comm)) if(mpi_comm == None): mpi_comm = MPI_COMM_WORLD myid = mpi_comm_rank(mpi_comm) nproc = mpi_comm_size(mpi_comm) try: local_filter = Tracker["local_filter"] except: local_filter = False #========================================================================= # volume reconstruction if( type(data) == types.ListType ): if Tracker["constants"]["CTF"]: #vol = recons3d_4nn_ctf_MPI(myid, data, Tracker["constants"]["snr"], \ # symmetry=Tracker["constants"]["sym"], npad=Tracker["constants"]["npad"], mpi_comm=mpi_comm, smearstep = Tracker["smearstep"]) vol = recons3d_4nnw_MPI(myid, data, Tracker["bckgnoise"], Tracker["constants"]["snr"], \ symmetry=Tracker["constants"]["sym"], npad=Tracker["constants"]["npad"], mpi_comm=mpi_comm, smearstep = Tracker["smearstep"]) else: vol = recons3d_4nn_MPI (myid, data,\ symmetry=Tracker["constants"]["sym"], npad=Tracker["constants"]["npad"], mpi_comm=mpi_comm) else: vol = data if myid == 0: from morphology import threshold from filter import filt_tanl, filt_btwl from utilities import model_circle, get_im import types nx = vol.get_xsize() if(Tracker["constants"]["mask3D"] == None): mask3D = model_circle(int(Tracker["constants"]["radius"]*float(nx)/float(Tracker["constants"]["nnxo"])+0.5), nx, nx, nx) elif(Tracker["constants"]["mask3D"] == "auto"): from utilities import adaptive_mask mask3D = adaptive_mask(vol) else: if( type(Tracker["constants"]["mask3D"]) == types.StringType ): mask3D = get_im(Tracker["constants"]["mask3D"]) else: mask3D = (Tracker["constants"]["mask3D"]).copy() nxm = mask3D.get_xsize() if( nx != nxm): from fundamentals import rot_shift3D mask3D = Util.window(rot_shift3D(mask3D,scale=float(nx)/float(nxm)),nx,nx,nx) nxm = mask3D.get_xsize() assert(nx == nxm) stat = Util.infomask(vol, mask3D, False) vol -= stat[0] Util.mul_scalar(vol, 1.0/stat[1]) vol = threshold(vol) Util.mul_img(vol, mask3D) if not local_filter: if( type(Tracker["lowpass"]) == types.ListType ): vol = filt_table(vol, Tracker["lowpass"]) else: vol = filt_tanl(vol, Tracker["lowpass"], Tracker["falloff"]) if local_filter: from morphology import binarize if(myid == 0): nx = mask3D.get_xsize() else: nx = 0 nx = bcast_number_to_all(nx, source_node = 0) # only main processor needs the two input volumes if(myid == 0): mask = binarize(mask3D, 0.5) locres = get_im(Tracker["local_filter"]) lx = locres.get_xsize() if(lx != nx): if(lx < nx): from fundamentals import fdecimate, rot_shift3D mask = Util.window(rot_shift3D(mask,scale=float(lx)/float(nx)),lx,lx,lx) vol = fdecimate(vol, lx,lx,lx) else: ERROR("local filter cannot be larger than input volume","user function",1) stat = Util.infomask(vol, mask, False) vol -= stat[0] Util.mul_scalar(vol, 1.0/stat[1]) else: lx = 0 locres = model_blank(1,1,1) vol = model_blank(1,1,1) lx = bcast_number_to_all(lx, source_node = 0) if( myid != 0 ): mask = model_blank(lx,lx,lx) bcast_EMData_to_all(mask, myid, 0, comm=mpi_comm) from filter import filterlocal vol = filterlocal( locres, vol, mask, Tracker["falloff"], myid, 0, nproc) if myid == 0: if(lx < nx): from fundamentals import fpol vol = fpol(vol, nx,nx,nx) vol = threshold(vol) Util.mul_img(vol, mask3D) del mask3D # vol.write_image('toto%03d.hdf'%iter) else: vol = model_blank(nx,nx,nx) """ else: if myid == 0: #from utilities import write_text_file #write_text_file(rops_table(vol,1),"goo.txt") stat = Util.infomask(vol, mask3D, False) vol -= stat[0] Util.mul_scalar(vol, 1.0/stat[1]) vol = threshold(vol) Util.mul_img(vol, mask3D) del mask3D # vol.write_image('toto%03d.hdf'%iter) """ # broadcast volume bcast_EMData_to_all(vol, myid, 0, comm=mpi_comm) #========================================================================= return vol
def do_volume_mrk02(ref_data): """ data - projections (scattered between cpus) or the volume. If volume, just do the volume processing options - the same for all cpus return - volume the same for all cpus """ from EMAN2 import Util from mpi import mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD from filter import filt_table from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import bcast_EMData_to_all, bcast_number_to_all, model_blank from fundamentals import rops_table, fftip, fft import types # Retrieve the function specific input arguments from ref_data data = ref_data[0] Tracker = ref_data[1] iter = ref_data[2] mpi_comm = ref_data[3] # # For DEBUG # print "Type of data %s" % (type(data)) # print "Type of Tracker %s" % (type(Tracker)) # print "Type of iter %s" % (type(iter)) # print "Type of mpi_comm %s" % (type(mpi_comm)) if (mpi_comm == None): mpi_comm = MPI_COMM_WORLD myid = mpi_comm_rank(mpi_comm) nproc = mpi_comm_size(mpi_comm) try: local_filter = Tracker["local_filter"] except: local_filter = False #========================================================================= # volume reconstruction if (type(data) == types.ListType): if Tracker["constants"]["CTF"]: vol = recons3d_4nn_ctf_MPI(myid, data, Tracker["constants"]["snr"], \ symmetry=Tracker["constants"]["sym"], npad=Tracker["constants"]["npad"], mpi_comm=mpi_comm, smearstep = Tracker["smearstep"]) else: vol = recons3d_4nn_MPI (myid, data,\ symmetry=Tracker["constants"]["sym"], npad=Tracker["constants"]["npad"], mpi_comm=mpi_comm) else: vol = data if myid == 0: from morphology import threshold from filter import filt_tanl, filt_btwl from utilities import model_circle, get_im import types nx = vol.get_xsize() if (Tracker["constants"]["mask3D"] == None): mask3D = model_circle( int(Tracker["constants"]["radius"] * float(nx) / float(Tracker["constants"]["nnxo"]) + 0.5), nx, nx, nx) elif (Tracker["constants"]["mask3D"] == "auto"): from utilities import adaptive_mask mask3D = adaptive_mask(vol) else: if (type(Tracker["constants"]["mask3D"]) == types.StringType): mask3D = get_im(Tracker["constants"]["mask3D"]) else: mask3D = (Tracker["constants"]["mask3D"]).copy() nxm = mask3D.get_xsize() if (nx != nxm): from fundamentals import rot_shift3D mask3D = Util.window( rot_shift3D(mask3D, scale=float(nx) / float(nxm)), nx, nx, nx) nxm = mask3D.get_xsize() assert (nx == nxm) stat = Util.infomask(vol, mask3D, False) vol -= stat[0] Util.mul_scalar(vol, 1.0 / stat[1]) vol = threshold(vol) Util.mul_img(vol, mask3D) if (Tracker["PWadjustment"]): from utilities import read_text_file, write_text_file rt = read_text_file(Tracker["PWadjustment"]) fftip(vol) ro = rops_table(vol) # Here unless I am mistaken it is enough to take the beginning of the reference pw. for i in xrange(1, len(ro)): ro[i] = (rt[i] / ro[i])**Tracker["upscale"] #write_text_file(rops_table(filt_table( vol, ro),1),"foo.txt") if Tracker["constants"]["sausage"]: ny = vol.get_ysize() y = float(ny) from math import exp for i in xrange(len(ro)): ro[i] *= \ (1.0+1.0*exp(-(((i/y/Tracker["constants"]["pixel_size"])-0.10)/0.025)**2)+1.0*exp(-(((i/y/Tracker["constants"]["pixel_size"])-0.215)/0.025)**2)) if local_filter: # skip low-pass filtration vol = fft(filt_table(vol, ro)) else: if (type(Tracker["lowpass"]) == types.ListType): vol = fft( filt_table(filt_table(vol, Tracker["lowpass"]), ro)) else: vol = fft( filt_table( filt_tanl(vol, Tracker["lowpass"], Tracker["falloff"]), ro)) del ro else: if Tracker["constants"]["sausage"]: ny = vol.get_ysize() y = float(ny) ro = [0.0] * (ny // 2 + 2) from math import exp for i in xrange(len(ro)): ro[i] = \ (1.0+1.0*exp(-(((i/y/Tracker["constants"]["pixel_size"])-0.10)/0.025)**2)+1.0*exp(-(((i/y/Tracker["constants"]["pixel_size"])-0.215)/0.025)**2)) fftip(vol) filt_table(vol, ro) del ro if not local_filter: if (type(Tracker["lowpass"]) == types.ListType): vol = filt_table(vol, Tracker["lowpass"]) else: vol = filt_tanl(vol, Tracker["lowpass"], Tracker["falloff"]) if Tracker["constants"]["sausage"]: vol = fft(vol) if local_filter: from morphology import binarize if (myid == 0): nx = mask3D.get_xsize() else: nx = 0 nx = bcast_number_to_all(nx, source_node=0) # only main processor needs the two input volumes if (myid == 0): mask = binarize(mask3D, 0.5) locres = get_im(Tracker["local_filter"]) lx = locres.get_xsize() if (lx != nx): if (lx < nx): from fundamentals import fdecimate, rot_shift3D mask = Util.window( rot_shift3D(mask, scale=float(lx) / float(nx)), lx, lx, lx) vol = fdecimate(vol, lx, lx, lx) else: ERROR("local filter cannot be larger than input volume", "user function", 1) stat = Util.infomask(vol, mask, False) vol -= stat[0] Util.mul_scalar(vol, 1.0 / stat[1]) else: lx = 0 locres = model_blank(1, 1, 1) vol = model_blank(1, 1, 1) lx = bcast_number_to_all(lx, source_node=0) if (myid != 0): mask = model_blank(lx, lx, lx) bcast_EMData_to_all(mask, myid, 0, comm=mpi_comm) from filter import filterlocal vol = filterlocal(locres, vol, mask, Tracker["falloff"], myid, 0, nproc) if myid == 0: if (lx < nx): from fundamentals import fpol vol = fpol(vol, nx, nx, nx) vol = threshold(vol) vol = filt_btwl(vol, 0.38, 0.5) # This will have to be corrected. Util.mul_img(vol, mask3D) del mask3D # vol.write_image('toto%03d.hdf'%iter) else: vol = model_blank(nx, nx, nx) else: if myid == 0: #from utilities import write_text_file #write_text_file(rops_table(vol,1),"goo.txt") stat = Util.infomask(vol, mask3D, False) vol -= stat[0] Util.mul_scalar(vol, 1.0 / stat[1]) vol = threshold(vol) vol = filt_btwl(vol, 0.38, 0.5) # This will have to be corrected. Util.mul_img(vol, mask3D) del mask3D # vol.write_image('toto%03d.hdf'%iter) # broadcast volume bcast_EMData_to_all(vol, myid, 0, comm=mpi_comm) #========================================================================= return vol
def main(): import os import sys from optparse import OptionParser arglist = [] for arg in sys.argv: arglist.append(arg) progname = os.path.basename(arglist[0]) usage = progname + """ inputvolume locresvolume maskfile outputfile --radius --falloff --MPI Locally filer a volume based on local resolution volume (sxlocres.py) within area outlined by the maskfile """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option( "--radius", type="int", default=-1, help= "if there is no maskfile, sphere with r=radius will be used, by default the radius is nx/2-1" ) parser.add_option("--falloff", type="float", default=0.1, help="falloff of tanl filter (default 0.1)") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 3 or len(args) > 4: print("See usage " + usage) sys.exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() if options.MPI: from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv, mpi_send, mpi_recv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT sys.argv = mpi_init(len(sys.argv), sys.argv) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 if (myid == main_node): #print sys.argv vi = get_im(sys.argv[1]) ui = get_im(sys.argv[2]) #print Util.infomask(ui, None, True) radius = options.radius nx = vi.get_xsize() ny = vi.get_ysize() nz = vi.get_zsize() dis = [nx, ny, nz] else: falloff = 0.0 radius = 0 dis = [0, 0, 0] vi = None ui = None dis = bcast_list_to_all(dis, myid, source_node=main_node) if (myid != main_node): nx = int(dis[0]) ny = int(dis[1]) nz = int(dis[2]) radius = bcast_number_to_all(radius, main_node) if len(args) == 3: if (radius == -1): radius = min(nx, ny, nz) // 2 - 1 m = model_circle(radius, nx, ny, nz) outvol = args[2] elif len(args) == 4: if (myid == main_node): m = binarize(get_im(args[2]), 0.5) else: m = model_blank(nx, ny, nz) outvol = args[3] bcast_EMData_to_all(m, myid, main_node) from filter import filterlocal filteredvol = filterlocal(ui, vi, m, options.falloff, myid, main_node, number_of_proc) if (myid == 0): filteredvol.write_image(outvol) from mpi import mpi_finalize mpi_finalize() else: vi = get_im(args[0]) ui = get_im( args[1] ) # resolution volume, values are assumed to be from 0 to 0.5 nn = vi.get_xsize() falloff = options.falloff if len(args) == 3: radius = options.radius if (radius == -1): radius = nn // 2 - 1 m = model_circle(radius, nn, nn, nn) outvol = args[2] elif len(args) == 4: m = binarize(get_im(args[2]), 0.5) outvol = args[3] fftip(vi) # this is the volume to be filtered # Round all resolution numbers to two digits for x in range(nn): for y in range(nn): for z in range(nn): ui.set_value_at_fast(x, y, z, round(ui.get_value_at(x, y, z), 2)) st = Util.infomask(ui, m, True) filteredvol = model_blank(nn, nn, nn) cutoff = max(st[2] - 0.01, 0.0) while (cutoff < st[3]): cutoff = round(cutoff + 0.01, 2) pt = Util.infomask( threshold_outside(ui, cutoff - 0.00501, cutoff + 0.005), m, True) if (pt[0] != 0.0): vovo = fft(filt_tanl(vi, cutoff, falloff)) for x in range(nn): for y in range(nn): for z in range(nn): if (m.get_value_at(x, y, z) > 0.5): if (round(ui.get_value_at(x, y, z), 2) == cutoff): filteredvol.set_value_at_fast( x, y, z, vovo.get_value_at(x, y, z)) filteredvol.write_image(outvol)
def main(): import os import sys from optparse import OptionParser arglist = [] for arg in sys.argv: arglist.append(arg) progname = os.path.basename(arglist[0]) usage = ( progname + """ inputvolume locresvolume maskfile outputfile --radius --falloff --MPI Locally filer a volume based on local resolution volume (sxlocres.py) within area outlined by the maskfile """ ) parser = OptionParser(usage, version=SPARXVERSION) parser.add_option( "--radius", type="int", default=-1, help="if there is no maskfile, sphere with r=radius will be used, by default the radius is nx/2-1", ) parser.add_option("--falloff", type="float", default=0.1, help="falloff of tanl filter (default 0.1)") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 3 or len(args) > 4: print "See usage " + usage sys.exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() if options.MPI: from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv, mpi_send, mpi_recv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT sys.argv = mpi_init(len(sys.argv), sys.argv) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 if myid == main_node: # print sys.argv vi = get_im(sys.argv[1]) ui = get_im(sys.argv[2]) # print Util.infomask(ui, None, True) radius = options.radius nx = vi.get_xsize() ny = vi.get_ysize() nz = vi.get_zsize() dis = [nx, ny, nz] else: falloff = 0.0 radius = 0 dis = [0, 0, 0] vi = None ui = None dis = bcast_list_to_all(dis, myid, source_node=main_node) if myid != main_node: nx = int(dis[0]) ny = int(dis[1]) nz = int(dis[2]) radius = bcast_number_to_all(radius, main_node) if len(args) == 3: if radius == -1: radius = min(nx, ny, nz) // 2 - 1 m = model_circle(radius, nx, ny, nz) outvol = args[2] elif len(args) == 4: if myid == main_node: m = binarize(get_im(args[2]), 0.5) else: m = model_blank(nx, ny, nz) outvol = args[3] bcast_EMData_to_all(m, myid, main_node) from filter import filterlocal filteredvol = filterlocal(ui, vi, m, options.falloff, myid, main_node, number_of_proc) if myid == 0: filteredvol.write_image(outvol) from mpi import mpi_finalize mpi_finalize() else: vi = get_im(args[0]) ui = get_im(args[1]) # resolution volume, values are assumed to be from 0 to 0.5 nn = vi.get_xsize() falloff = options.falloff if len(args) == 3: radius = options.radius if radius == -1: radius = nn // 2 - 1 m = model_circle(radius, nn, nn, nn) outvol = args[2] elif len(args) == 4: m = binarize(get_im(args[2]), 0.5) outvol = args[3] fftip(vi) # this is the volume to be filtered # Round all resolution numbers to two digits for x in xrange(nn): for y in xrange(nn): for z in xrange(nn): ui.set_value_at_fast(x, y, z, round(ui.get_value_at(x, y, z), 2)) st = Util.infomask(ui, m, True) filteredvol = model_blank(nn, nn, nn) cutoff = max(st[2] - 0.01, 0.0) while cutoff < st[3]: cutoff = round(cutoff + 0.01, 2) pt = Util.infomask(threshold_outside(ui, cutoff - 0.00501, cutoff + 0.005), m, True) if pt[0] != 0.0: vovo = fft(filt_tanl(vi, cutoff, falloff)) for x in xrange(nn): for y in xrange(nn): for z in xrange(nn): if m.get_value_at(x, y, z) > 0.5: if round(ui.get_value_at(x, y, z), 2) == cutoff: filteredvol.set_value_at_fast(x, y, z, vovo.get_value_at(x, y, z)) filteredvol.write_image(outvol)