예제 #1
0
def analysis_stocks_RTS(start_date,
                        end_date,
                        margin=50,
                        factor=0.325,
                        investment_size=200):

    df_result = pd.read_csv('dataRTS.csv', index_col='Ticker')

    df_result = df_result.sort_index()
    symbols = df_result.index

    dates = pd.date_range(start_date, end_date)  # date range as index
    df_data = get_data_us(symbols, dates,
                          benchmark=None)  # get data for each symbol

    # Fill missing values
    fill_missing_values(df_data)
    #    return prices
    #    df_result['Commision'] = prices['Commision']

    df_result['Spread'] = df_result['Spread'] * factor

    df_result['Close'] = df_data[symbols].iloc[-1, :].values
    df_result['MinNbStock'] = df_result['Lot'] * 0.01
    df_result['PriceStockMarg'] = df_result['MinNbStock'] * df_result[
        'Close'] / margin

    df_result['NbMaxVol'] = round(
        investment_size / df_result['PriceStockMarg'], 0)
    df_result['MaxVolLot'] = round(
        investment_size / df_result['PriceStockMarg'] * 0.01, 2)

    df_result['CommMin'] = (
        df_result['Spread'] - df_result['Buy'] -
        df_result['Sell']) / df_result['Lot'] * df_result['MinNbStock']
    df_result['Comm_Trade'] = (
        df_result['Spread'] - df_result['Buy'] -
        df_result['Sell']) / df_result['Lot'] * df_result['NbMaxVol']

    df_result['Comm_Price'] = round(
        df_result['CommMin'] / df_result['MinNbStock'] /
        df_result['Close'].values * 100, 3)
    df_result['Comm_Invest'] = round(
        df_result['Comm_Trade'] / investment_size * 100, 3)


    relative_strength = 40*df_data[symbols].pct_change(periods = 63).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 126).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 189).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 252).fillna(0)

    df_result['RSW'] = relative_strength.iloc[-1, :].values

    return df_result, df_data
예제 #2
0
파일: VNINDEX.py 프로젝트: dxcv/trading
def my_portfolio(start="2018-7-10", end="2018-10-16"):
    dates = pd.date_range(start, end)
    symbols = [
        'PHC', 'MBB', 'GEX', 'MBS', 'NDN', 'PNJ', 'STB', 'PVD', 'VRC', 'VIX'
    ]
    #    symbols = ['PHC','MBB','GEX', 'MBS']
    df_data = get_data(symbols, dates,
                       benchmark='^VNINDEX')  # get data for each symbol
    fill_missing_values(df_data)
    plot_normalized_data(df_data,
                         title=" Daily porfolio value with VNINDEX ",
                         xlabel="Date",
                         ylabel=" Normalized price ")
예제 #3
0
def passive_strategy(start_date, end_date, market="SPY"):

    symbols = getliststocks(typestock=market)

    dates = pd.date_range(start_date, end_date)  # date range as index
    df_data = get_data_us(symbols, dates,
                          benchmark=market)  # get data for each symbol

    df_volume = get_data_us(symbols, dates, benchmark=market,
                            colname='Volume')  # get data for each symbol
    df_high = get_data_us(symbols, dates, benchmark=market, colname='High')
    df_low = get_data_us(symbols, dates, benchmark=market, colname='Low')

    df_value = (df_volume * df_data).fillna(0)
    valueM30 = df_value.rolling(window=30).mean()

    vol_mean = pd.Series(df_volume.mean(), name='Volume')
    max_high = pd.Series(df_high.max(), name='MaxHigh')
    min_low = pd.Series(df_low.min(), name='MinLow')
    cpm = pd.Series(max_high / min_low, name='CPM')
    value_mean = pd.Series(df_value.mean(), name='Value')

    # Fill missing values
    fill_missing_values(df_data)

    # Assess the portfolio

    allocations, cr, adr, sddr, sr = optimize_portfolio(sd=start_date,
                                                        ed=end_date,
                                                        syms=symbols,
                                                        benchmark=market,
                                                        country='US',
                                                        gen_plot=True)

    # Print statistics
    print("Start Date:", start_date)
    print("End Date:", end_date)
    print("Symbols:", symbols)
    print("Optimal allocations:", allocations)
    print("Sharpe Ratio:", sr)
    print("Volatility (stdev of daily returns):", sddr)
    print("Average Daily Return:", adr)
    print("Cumulative Return:", cr)

    investment = 50000000
    df_result = pd.DataFrame(index=symbols)
    df_result['Opt allocs'] = allocations
    df_result['Cash'] = allocations * investment
    df_result['Close'] = df_data[symbols].iloc[-1, :].values
    df_result['Volume'] = df_volume[symbols].iloc[-1, :].values
    df_result['VolumeMean'] = vol_mean[symbols]
    df_result['Value'] = df_result['Close'] * df_result['Volume']
    df_result['ValueMean'] = value_mean[symbols]
    df_result['ValueMA30'] = valueM30[symbols].iloc[-1, :].values
    #    df_result['MaxH'] = max_high
    #    df_result['MinL'] = min_low
    df_result['CPM'] = cpm[symbols]
    df_result['Shares'] = round(
        df_result['Cash'] / df_result['Close'].values / 1000, 0)
    df_result['Volatility'] = df_data[symbols].pct_change().std()

    alpha_beta = analysis_alpha_beta(df_data, symbols, market)
    df_result['Alpha'] = alpha_beta['Alpha']
    df_result['Beta'] = alpha_beta['Beta']

    relative_strength = 40*df_data[symbols].pct_change(periods = 63).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 126).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 189).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 252).fillna(0)

    df_result['RSW'] = relative_strength.iloc[-1, :].values

    return df_result, df_data
예제 #4
0
파일: VNINDEX.py 프로젝트: dxcv/trading
def passive_strategy(start_date, end_date, market="^VNINDEX", symbols=None):

    if symbols == None:
        symbols = getliststocks(typestock=market)

    dates = pd.date_range(start_date, end_date)  # date range as index
    df_data = get_data(symbols, dates,
                       benchmark=market)  # get data for each symbol

    df_volume = get_data(symbols, dates, benchmark=market,
                         colname='<Volume>')  # get data for each symbol
    df_high = get_data(symbols, dates, benchmark=market, colname='<High>')
    df_low = get_data(symbols, dates, benchmark=market, colname='<Low>')

    #    covariance = numpy.cov(asset , SPY)[0][1]
    #    variance = numpy.var(asset)
    #
    #    beta = covariance / variance
    df_volume = df_volume.fillna(0)
    df_value = (df_volume * df_data).fillna(0)
    valueM30 = df_value.rolling(window=30).mean()

    vol_mean = pd.Series(df_volume.mean(), name='Volume')
    max_high = pd.Series(df_high.max(), name='MaxHigh')
    min_low = pd.Series(df_low.min(), name='MinLow')
    cpm = pd.Series(max_high / min_low, name='CPM')
    value_mean = pd.Series(df_value.mean(), name='ValueMean')

    # Fill missing values
    fill_missing_values(df_data)

    # Assess the portfolio

    allocations, cr, adr, sddr, sr = optimize_portfolio(sd=start_date,
                                                        ed=end_date,
                                                        syms=symbols,
                                                        benchmark=market,
                                                        gen_plot=True)

    # Print statistics
    print("Start Date:", start_date)
    print("End Date:", end_date)
    print("Symbols:", symbols)
    print("Optimal allocations:", allocations)
    print("Sharpe Ratio:", sr)
    print("Volatility (stdev of daily returns):", sddr)
    print("Average Daily Return:", adr)
    print("Cumulative Return:", cr)

    investment = 50000000
    df_result = pd.DataFrame(index=symbols)
    df_result['Opt allocs'] = allocations
    df_result['Cash'] = allocations * investment
    df_result['Close'] = df_data[symbols].iloc[-1, :].values
    df_result['PCT_Change'] = 100 * (df_data[symbols].iloc[-1, :].values -
                                     df_data[symbols].iloc[0, :].values
                                     ) / df_data[symbols].iloc[0, :].values
    df_result['Volume'] = df_volume[symbols].iloc[-1, :].values
    df_result['VolumeMean'] = vol_mean[symbols]
    df_result['Value'] = df_result['Close'] * df_result['Volume']
    df_result['ValueMean'] = value_mean[symbols]
    df_result['ValueMA30'] = valueM30[symbols].iloc[-1, :].values
    #    df_result['MaxH'] = max_high
    #    df_result['MinL'] = min_low
    df_result['CPM'] = cpm[symbols]
    df_result['Shares'] = round(
        df_result['Cash'] / df_result['Close'].values / 1000, 0)

    df_result['Volatility'] = df_data[symbols].pct_change().std()

    df_result['PCT_Change0D'] = df_data[symbols].pct_change().iloc[
        -1, :].values * 100
    df_result['PCT_Change1D'] = df_data[symbols].pct_change().iloc[
        -2, :].values * 100
    df_result['PCT_Change2D'] = df_data[symbols].pct_change().iloc[
        -3, :].values * 100

    alpha_beta = analysis_alpha_beta(df_data, symbols, market)
    df_result['Alpha'] = alpha_beta['Alpha']
    df_result['Beta'] = alpha_beta['Beta']

    relative_strength = 40*df_data[symbols].pct_change(periods = 63).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 126).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 189).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 252).fillna(0)

    relative_strength1M = 100 * df_data[symbols].pct_change(
        periods=21).fillna(0)
    relative_strength2M = 100 * df_data[symbols].pct_change(
        periods=42).fillna(0)

    df_result['RSW'] = relative_strength.iloc[-1, :].values

    df_result['RSW1M'] = relative_strength1M.iloc[-1, :].values
    df_result['RSW2M'] = relative_strength2M.iloc[-1, :].values

    marketVNI = df_data[symbols].pct_change()
    advances = marketVNI[marketVNI > 0]
    declines = marketVNI[marketVNI <= 0]
    dec = advances.isnull().sum(axis=1)
    adv = declines.isnull().sum(axis=1)

    df_market = pd.DataFrame(index=marketVNI.index)
    df_market[market + 'Volume'] = df_volume[market]
    df_market[market + 'PCT_Volume'] = df_volume[market].pct_change() * 100
    df_market[market + 'PCT_Index'] = df_data[market].pct_change() * 100
    #    df_market['Adv'] = adv
    #    df_market['Dec'] = dec
    df_market[market + 'Adv_Dec'] = adv - dec
    df_market[market + 'Dec/Adv'] = dec / adv
    strength = pd.Series(index=marketVNI.index)
    strength[(df_market[market + 'Adv_Dec'] > 0)
             & (df_market[market + 'PCT_Index'] > 0)] = 1
    strength[(df_market[market + 'Adv_Dec'] < 0)
             & (df_market[market + 'PCT_Index'] < 0)] = -1
    strength[(df_market[market + 'Adv_Dec'] < 0)
             & (df_market[market + 'PCT_Index'] > 0)] = 0
    df_market[market + 'Strength'] = strength
    #    np.where((df_data[symbols].pct_change() > 0), 1, -1)

    return df_result, df_data, df_market
예제 #5
0
파일: VNINDEX.py 프로젝트: dxcv/trading
def analysis_market(tickers,
                    start,
                    end,
                    update=False,
                    market="^VNINDEX",
                    source="cp68"):

    if tickers == None:
        tickers = getliststocks(typestock=market)

    if update:
        end_date = datetime.datetime.today()
        dates = pd.date_range(start, end_date)  # date range as index
        df_data = pd.DataFrame(index=dates)
        df_volume = pd.DataFrame(index=dates)
    else:
        dates = pd.date_range(start, end)  # date range as index
        df_data = pd.DataFrame(index=dates)
        df_volume = pd.DataFrame(index=dates)

    for ticker in tickers:
        #        print(" Analysing ..." , ticker)
        #        try:
        #
        df = process_data(ticker=ticker,
                          start=start,
                          end=end,
                          realtime=update,
                          source=source)

        #            print(df_temp.head())

        df_data = df_data.join(df['Close'])
        df_data = df_data.rename(columns={'Close': ticker})

        df_volume = df_volume.join(df['Volume'])
        df_volume = df_volume.rename(columns={'Volume': ticker})


#        except Exception as e:
#            print (e)
#            print("Error in reading symbol: ", ticker)
#            pass

    fill_missing_values(df_data)
    fill_missing_values(df_volume)

    marketVNI = df_data[tickers].pct_change()
    advances = marketVNI[marketVNI > 0]
    declines = marketVNI[marketVNI <= 0]
    dec = advances.isnull().sum(axis=1)
    adv = declines.isnull().sum(axis=1)

    df_market = pd.DataFrame(index=marketVNI.index)

    #    df_market[market+'Volume'] = df_volume[market]
    #    df_market[market+'PCT_Volume'] = df_volume[market].pct_change() *100
    #    df_market[market+'PCT_Index'] = df_data[market].pct_change() *100
    #    df_market[market+'Adv_Dec'] = adv - dec
    #    df_market[market+'Dec/Adv'] = dec/adv
    #    strength = pd.Series(index = marketVNI.index)
    #    strength[(df_market[market+'Adv_Dec']> 0) & (df_market[market+'PCT_Index'] > 0)] = 1
    #    strength[(df_market[market+'Adv_Dec']< 0) & (df_market[market+'PCT_Index'] < 0)] = -1
    #    strength[(df_market[market+'Adv_Dec']< 0) & (df_market[market+'PCT_Index'] > 0)] = 0
    #    df_market[market+'Strength'] = strength

    return df_market
예제 #6
0
def passive_strategy(start_date,
                     end_date,
                     market=None,
                     symbols=None,
                     realtime=True,
                     source='yahoo'):

    if symbols == None:
        symbols = getliststocks(typestock=market)

    if realtime:
        end_date = datetime.datetime.today()

    dates = pd.date_range(start_date, end_date)  # date range as index
    df_data = get_data(symbols,
                       dates,
                       benchmark=market,
                       colname='Adj Close',
                       realtime=realtime,
                       source=source)  # get data for each symbol
    # Fill missing values
    fill_missing_values(df_data)
    df_volume = get_data(symbols,
                         dates,
                         benchmark=market,
                         colname='Volume',
                         realtime=realtime,
                         source=source)  # get data for each symbol
    df_rsi = get_RSI(symbols, df_data)
    df_volume = df_volume.fillna(0)

    df_result = pd.DataFrame(index=symbols)

    df_result['Ticker'] = symbols
    df_result['Close'] = df_data[symbols].iloc[-1, :].values
    df_result['PCT_C'] = 100 * (df_data[symbols].iloc[-1, :].values -
                                df_data[symbols].iloc[0, :].values
                                ) / df_data[symbols].iloc[0, :].values
    df_result['Volume'] = df_volume[symbols].iloc[
        -1, :].values + df_volume[symbols].iloc[-2, :].values

    df_result['Value'] = df_result['Close'] * df_result['Volume']

    df_result['Volatility'] = df_data[symbols].pct_change().std()

    df_result['PCT_3D'] = df_data[symbols].pct_change().iloc[
        -4, :].values * 100
    df_result['PCT_2D'] = df_data[symbols].pct_change().iloc[
        -3, :].values * 100
    df_result['PCT_1D'] = df_data[symbols].pct_change().iloc[
        -2, :].values * 100
    df_result['PCT_0D'] = df_data[symbols].pct_change().iloc[
        -1, :].values * 100


    relative_strength = 40*df_data[symbols].pct_change(periods = 63).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 126).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 189).fillna(0) \
                     + 20*df_data[symbols].pct_change(periods = 252).fillna(0)

    relative_strength1M = 100 * df_data[symbols].pct_change(
        periods=21).fillna(0)
    relative_strength2M = 100 * df_data[symbols].pct_change(
        periods=42).fillna(0)

    df_result['RSW'] = relative_strength.iloc[-1, :].values

    df_result['RSW1M'] = relative_strength1M.iloc[-1, :].values
    df_result['RSW2M'] = relative_strength2M.iloc[-1, :].values
    df_result['RSI'] = df_rsi[symbols].iloc[-1, :].values

    return df_result, df_data