예제 #1
0
def test_BDTExampleTwo():
    # Valuation of a European option on a coupon bearing bond
    # This follows example in Fig 28.11 of John Hull's book (6th Edition)
    # but does not have the exact same dt so there are some differences

    testCases.banner("===================== FIG 28.11 HULL BOOK =============")

    settlement_date = Date(1, 12, 2019)
    issue_date = Date(1, 12, 2015)
    expiry_date = settlement_date.add_tenor("18m")
    maturity_date = settlement_date.add_tenor("10Y")
    coupon = 0.05
    freq_type = FrequencyTypes.SEMI_ANNUAL
    accrual_type = DayCountTypes.ACT_ACT_ICMA
    bond = Bond(issue_date, maturity_date, coupon, freq_type, accrual_type)

    coupon_times = []
    coupon_flows = []
    cpn = bond._coupon / bond._frequency
    num_flows = len(bond._flow_dates)

    for i in range(1, num_flows):
        pcd = bond._flow_dates[i - 1]
        ncd = bond._flow_dates[i]
        if pcd < settlement_date and ncd > settlement_date:
            flow_time = (pcd - settlement_date) / gDaysInYear
            coupon_times.append(flow_time)
            coupon_flows.append(cpn)

    for flow_date in bond._flow_dates:
        if flow_date > settlement_date:
            flow_time = (flow_date - settlement_date) / gDaysInYear
            coupon_times.append(flow_time)
            coupon_flows.append(cpn)

    coupon_times = np.array(coupon_times)
    coupon_flows = np.array(coupon_flows)

    strike_price = 105.0
    face = 100.0

    tmat = (maturity_date - settlement_date) / gDaysInYear
    texp = (expiry_date - settlement_date) / gDaysInYear
    times = np.linspace(0, tmat, 11)
    dates = settlement_date.add_years(times)
    dfs = np.exp(-0.05 * times)

    testCases.header("LABEL", "VALUES")
    testCases.print("TIMES:", times)

    curve = DiscountCurve(settlement_date, dates, dfs)

    price = bond.clean_price_from_discount_curve(settlement_date, curve)
    testCases.print("Fixed Income Price:", price)

    sigma = 0.20

    # Test convergence
    num_steps_list = [5]  # [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
    exercise_type = FinExerciseTypes.AMERICAN

    testCases.header("Values")
    treeVector = []
    for num_time_steps in num_steps_list:
        model = BDTTree(sigma, num_time_steps)
        model.build_tree(tmat, times, dfs)
        v = model.bond_option(texp, strike_price, face, coupon_times,
                              coupon_flows, exercise_type)

        testCases.print(v)
        treeVector.append(v['call'])

    if PLOT_GRAPHS:
        plt.plot(num_steps_list, treeVector)

    # The value in Hull converges to 0.699 with 100 time steps while I get 0.70

    if 1 == 0:
        print("RT")
        print_tree(model._rt, 5)
        print("Q")
        print_tree(model._Q, 5)
예제 #2
0
def test_BDTExampleTwo():
    # Valuation of a European option on a coupon bearing bond
    # This follows example in Fig 28.11 of John Hull's book (6th Edition)
    # but does not have the exact same dt so there are some differences

    settlement_date = Date(1, 12, 2019)
    issue_date = Date(1, 12, 2015)
    expiry_date = settlement_date.add_tenor("18m")
    maturity_date = settlement_date.add_tenor("10Y")
    coupon = 0.05
    freq_type = FrequencyTypes.SEMI_ANNUAL
    accrual_type = DayCountTypes.ACT_ACT_ICMA
    bond = Bond(issue_date, maturity_date, coupon, freq_type, accrual_type)

    coupon_times = []
    coupon_flows = []
    cpn = bond._coupon / bond._frequency
    num_flows = len(bond._coupon_dates)

    for i in range(1, num_flows):
        pcd = bond._coupon_dates[i - 1]
        ncd = bond._coupon_dates[i]
        if pcd < settlement_date and ncd > settlement_date:
            flow_time = (pcd - settlement_date) / gDaysInYear
            coupon_times.append(flow_time)
            coupon_flows.append(cpn)

    for flow_date in bond._coupon_dates:
        if flow_date > settlement_date:
            flow_time = (flow_date - settlement_date) / gDaysInYear
            coupon_times.append(flow_time)
            coupon_flows.append(cpn)

    coupon_times = np.array(coupon_times)
    coupon_flows = np.array(coupon_flows)

    strike_price = 105.0
    face = 100.0

    tmat = (maturity_date - settlement_date) / gDaysInYear
    texp = (expiry_date - settlement_date) / gDaysInYear
    times = np.linspace(0, tmat, 11)
    dates = settlement_date.add_years(times)
    dfs = np.exp(-0.05 * times)

    curve = DiscountCurve(settlement_date, dates, dfs)

    price = bond.clean_price_from_discount_curve(settlement_date, curve)
    assert round(price, 4) == 99.5420

    sigma = 0.20

    # Test convergence
    num_time_steps = 5
    exercise_type = FinExerciseTypes.AMERICAN

    model = BDTTree(sigma, num_time_steps)
    model.build_tree(tmat, times, dfs)
    v = model.bond_option(texp, strike_price, face, coupon_times, coupon_flows,
                          exercise_type)

    assert round(v['call'], 4) == 0.5043
    assert round(v['put'], 4) == 8.2242