def test_BondPortfolio(): import pandas as pd path = os.path.join(os.path.dirname(__file__), './data/giltBondPrices.txt') bondDataFrame = pd.read_csv(path, sep='\t') bondDataFrame['mid'] = 0.5*(bondDataFrame['bid'] + bondDataFrame['ask']) freq_type = FrequencyTypes.SEMI_ANNUAL accrual_type = DayCountTypes.ACT_ACT_ICMA settlement = Date(19, 9, 2012) testCases.header("DCTYPE", "MATDATE", "CPN", "PRICE", "ACCD", "YTM") for accrual_type in DayCountTypes: for _, bond in bondDataFrame.iterrows(): date_string = bond['maturity'] matDatetime = dt.datetime.strptime(date_string, '%d-%b-%y') maturityDt = from_datetime(matDatetime) issueDt = Date(maturityDt._d, maturityDt._m, 2000) coupon = bond['coupon']/100.0 clean_price = bond['mid'] bond = Bond(issueDt, maturityDt, coupon, freq_type, accrual_type) ytm = bond.yield_to_maturity(settlement, clean_price) accrued_interest = bond._accrued_interest testCases.print(accrual_type, maturityDt, coupon*100.0, clean_price, accrued_interest, ytm*100.0)
def test_BondZeroCurve(): import pandas as pd path = os.path.join(os.path.dirname(__file__), './data/giltBondPrices.txt') bondDataFrame = pd.read_csv(path, sep='\t') bondDataFrame['mid'] = 0.5 * (bondDataFrame['bid'] + bondDataFrame['ask']) freq_type = FrequencyTypes.SEMI_ANNUAL accrual_type = DayCountTypes.ACT_ACT_ICMA settlement = Date(19, 9, 2012) bonds = [] clean_prices = [] for _, bondRow in bondDataFrame.iterrows(): date_string = bondRow['maturity'] matDatetime = dt.datetime.strptime(date_string, '%d-%b-%y') maturityDt = from_datetime(matDatetime) issueDt = Date(maturityDt._d, maturityDt._m, 2000) coupon = bondRow['coupon'] / 100.0 clean_price = bondRow['mid'] bond = Bond(issueDt, maturityDt, coupon, freq_type, accrual_type) bonds.append(bond) clean_prices.append(clean_price) ############################################################################### bondCurve = BondZeroCurve(settlement, bonds, clean_prices) testCases.header("DATE", "ZERO RATE") for _, bond in bondDataFrame.iterrows(): date_string = bond['maturity'] matDatetime = dt.datetime.strptime(date_string, '%d-%b-%y') maturityDt = from_datetime(matDatetime) zero_rate = bondCurve.zero_rate(maturityDt) testCases.print(maturityDt, zero_rate) if plotGraphs: bondCurve.plot("BOND CURVE")
def test_BondYieldCurve(): ########################################################################### import pandas as pd path = os.path.join(os.path.dirname(__file__), './data/giltBondPrices.txt') bondDataFrame = pd.read_csv(path, sep='\t') bondDataFrame['mid'] = 0.5 * (bondDataFrame['bid'] + bondDataFrame['ask']) freq_type = FrequencyTypes.SEMI_ANNUAL accrual_type = DayCountTypes.ACT_ACT_ICMA settlement = Date(19, 9, 2012) bonds = [] ylds = [] for _, bond in bondDataFrame.iterrows(): date_string = bond['maturity'] matDatetime = dt.datetime.strptime(date_string, '%d-%b-%y') maturityDt = from_datetime(matDatetime) issueDt = Date(maturityDt._d, maturityDt._m, 2000) coupon = bond['coupon'] / 100.0 clean_price = bond['mid'] bond = Bond(issueDt, maturityDt, coupon, freq_type, accrual_type) yld = bond.yield_to_maturity(settlement, clean_price) bonds.append(bond) ylds.append(yld) ############################################################################### curveFitMethod = CurveFitPolynomial() fittedCurve1 = BondYieldCurve(settlement, bonds, ylds, curveFitMethod) # fittedCurve1.display("GBP Yield Curve") curveFitMethod = CurveFitPolynomial(5) fittedCurve2 = BondYieldCurve(settlement, bonds, ylds, curveFitMethod) # fittedCurve2.display("GBP Yield Curve") curveFitMethod = CurveFitNelsonSiegel() fittedCurve3 = BondYieldCurve(settlement, bonds, ylds, curveFitMethod) # fittedCurve3.display("GBP Yield Curve") curveFitMethod = CurveFitNelsonSiegelSvensson() fittedCurve4 = BondYieldCurve(settlement, bonds, ylds, curveFitMethod) # fittedCurve4.display("GBP Yield Curve") curveFitMethod = CurveFitBSpline() fittedCurve5 = BondYieldCurve(settlement, bonds, ylds, curveFitMethod) # fittedCurve5.display("GBP Yield Curve") ############################################################################### testCases.header("PARAMETER", "VALUE") testCases.print("values", fittedCurve1._curveFit._coeffs) testCases.header("PARAMETER", "VALUE") testCases.print("values", fittedCurve2._curveFit._coeffs) testCases.header("PARAMETER", "VALUE") testCases.print("beta1", fittedCurve3._curveFit._beta1) testCases.print("beta2", fittedCurve3._curveFit._beta2) testCases.print("beta3", fittedCurve3._curveFit._beta3) testCases.print("tau", fittedCurve3._curveFit._tau) testCases.header("PARAMETER", "VALUE") testCases.print("beta1", fittedCurve4._curveFit._beta1) testCases.print("beta2", fittedCurve4._curveFit._beta2) testCases.print("beta3", fittedCurve4._curveFit._beta3) testCases.print("beta4", fittedCurve4._curveFit._beta4) testCases.print("tau1", fittedCurve4._curveFit._tau1) testCases.print("tau2", fittedCurve4._curveFit._tau2) ############################################################################### maturity_date = Date(19, 9, 2030) interpolated_yield = fittedCurve5.interpolated_yield(maturity_date) testCases.print(maturity_date, interpolated_yield)
def test_Bond(): import pandas as pd path = os.path.join(os.path.dirname(__file__), './data/giltBondPrices.txt') bondDataFrame = pd.read_csv(path, sep='\t') bondDataFrame['mid'] = 0.5 * (bondDataFrame['bid'] + bondDataFrame['ask']) freq_type = FrequencyTypes.SEMI_ANNUAL settlement_date = Date(19, 9, 2012) face = ONE_MILLION for accrual_type in DayCountTypes: testCases.header("MATURITY", "COUPON", "CLEAN_PRICE", "ACCD_DAYS", "ACCRUED", "YTM") for _, bond in bondDataFrame.iterrows(): date_string = bond['maturity'] matDatetime = dt.datetime.strptime(date_string, '%d-%b-%y') maturityDt = from_datetime(matDatetime) issueDt = Date(maturityDt._d, maturityDt._m, 2000) coupon = bond['coupon'] / 100.0 clean_price = bond['mid'] bond = Bond(issueDt, maturityDt, coupon, freq_type, accrual_type, 100) ytm = bond.yield_to_maturity(settlement_date, clean_price) accrued_interest = bond._accrued_interest accd_days = bond._accrued_days testCases.print("%18s" % maturityDt, "%8.4f" % coupon, "%10.4f" % clean_price, "%6.0f" % accd_days, "%10.4f" % accrued_interest, "%8.4f" % ytm) ########################################################################### # EXAMPLE FROM http://bondtutor.com/btchp4/topic6/topic6.htm accrualConvention = DayCountTypes.ACT_ACT_ICMA y = 0.062267 settlement_date = Date(19, 4, 1994) issue_date = Date(15, 7, 1990) maturity_date = Date(15, 7, 1997) coupon = 0.085 face = ONE_MILLION freq_type = FrequencyTypes.SEMI_ANNUAL bond = Bond(issue_date, maturity_date, coupon, freq_type, accrualConvention, face) testCases.header("FIELD", "VALUE") full_price = bond.full_price_from_ytm(settlement_date, y) testCases.print("Full Price = ", full_price) clean_price = bond.clean_price_from_ytm(settlement_date, y) testCases.print("Clean Price = ", clean_price) accrued_interest = bond._accrued_interest testCases.print("Accrued = ", accrued_interest) ytm = bond.yield_to_maturity(settlement_date, clean_price) testCases.print("Yield to Maturity = ", ytm) bump = 1e-4 priceBumpedUp = bond.full_price_from_ytm(settlement_date, y + bump) testCases.print("Price Bumped Up:", priceBumpedUp) priceBumpedDn = bond.full_price_from_ytm(settlement_date, y - bump) testCases.print("Price Bumped Dn:", priceBumpedDn) durationByBump = -(priceBumpedUp - full_price) / bump testCases.print("Duration by Bump = ", durationByBump) duration = bond.dollar_duration(settlement_date, y) testCases.print("Dollar Duration = ", duration) testCases.print("Duration Difference:", duration - durationByBump) modified_duration = bond.modified_duration(settlement_date, y) testCases.print("Modified Duration = ", modified_duration) macauley_duration = bond.macauley_duration(settlement_date, y) testCases.print("Macauley Duration = ", macauley_duration) conv = bond.convexity_from_ytm(settlement_date, y) testCases.print("Convexity = ", conv) # ASSET SWAP SPREAD # When the libor curve is the flat bond curve then the ASW is zero by # definition flat_curve = DiscountCurveFlat(settlement_date, ytm, FrequencyTypes.SEMI_ANNUAL) testCases.header("FIELD", "VALUE") clean_price = bond.clean_price_from_ytm(settlement_date, ytm) asw = bond.asset_swap_spread(settlement_date, clean_price, flat_curve) testCases.print("Discounted on Bond Curve ASW:", asw * 10000) # When the libor curve is the Libor curve then the ASW is positive libor_curve = build_Ibor_Curve(settlement_date) asw = bond.asset_swap_spread(settlement_date, clean_price, libor_curve) oas = bond.option_adjusted_spread(settlement_date, clean_price, libor_curve) testCases.print("Discounted on LIBOR Curve ASW:", asw * 10000) testCases.print("Discounted on LIBOR Curve OAS:", oas * 10000) p = 90.0 asw = bond.asset_swap_spread(settlement_date, p, libor_curve) oas = bond.option_adjusted_spread(settlement_date, p, libor_curve) testCases.print("Deep discount bond at 90 ASW:", asw * 10000) testCases.print("Deep discount bond at 90 OAS:", oas * 10000) p = 100.0 asw = bond.asset_swap_spread(settlement_date, p, libor_curve) oas = bond.option_adjusted_spread(settlement_date, p, libor_curve) testCases.print("Par bond at 100 ASW:", asw * 10000) testCases.print("Par bond at 100 OAS:", oas * 10000) p = 120.0 asw = bond.asset_swap_spread(settlement_date, p, libor_curve) oas = bond.option_adjusted_spread(settlement_date, p, libor_curve) testCases.print("Above par bond at 120 ASW:", asw * 10000) testCases.print("Above par bond at 120 OAS:", oas * 10000) ########################################################################## # https://data.bloomberglp.com/bat/sites/3/2017/07/SF-2017_Paul-Fjeldsted.pdf # Page 10 TREASURY NOTE SCREENSHOT ########################################################################## testCases.banner("BLOOMBERG US TREASURY EXAMPLE") settlement_date = Date(21, 7, 2017) issue_date = Date(15, 5, 2010) maturity_date = Date(15, 5, 2027) coupon = 0.02375 freq_type = FrequencyTypes.SEMI_ANNUAL accrual_type = DayCountTypes.ACT_ACT_ICMA face = 100.0 bond = Bond(issue_date, maturity_date, coupon, freq_type, accrual_type, face) testCases.header("FIELD", "VALUE") clean_price = 99.7808417 yld = bond.current_yield(clean_price) testCases.print("Current Yield = ", yld) ytm = bond.yield_to_maturity(settlement_date, clean_price, YTMCalcType.UK_DMO) testCases.print("UK DMO Yield To Maturity = ", ytm) ytm = bond.yield_to_maturity(settlement_date, clean_price, YTMCalcType.US_STREET) testCases.print("US STREET Yield To Maturity = ", ytm) ytm = bond.yield_to_maturity(settlement_date, clean_price, YTMCalcType.US_TREASURY) testCases.print("US TREASURY Yield To Maturity = ", ytm) full_price = bond.full_price_from_ytm(settlement_date, ytm) testCases.print("Full Price = ", full_price) clean_price = bond.clean_price_from_ytm(settlement_date, ytm) testCases.print("Clean Price = ", clean_price) accrued_interest = bond._accrued_interest testCases.print("Accrued = ", accrued_interest) accddays = bond._accrued_days testCases.print("Accrued Days = ", accddays) duration = bond.dollar_duration(settlement_date, ytm) testCases.print("Dollar Duration = ", duration) modified_duration = bond.modified_duration(settlement_date, ytm) testCases.print("Modified Duration = ", modified_duration) macauley_duration = bond.macauley_duration(settlement_date, ytm) testCases.print("Macauley Duration = ", macauley_duration) conv = bond.convexity_from_ytm(settlement_date, ytm) testCases.print("Convexity = ", conv) ########################################################################## # Page 11 APPLE NOTE SCREENSHOT ########################################################################## testCases.banner("BLOOMBERG APPLE CORP BOND EXAMPLE") settlement_date = Date(21, 7, 2017) issue_date = Date(13, 5, 2012) maturity_date = Date(13, 5, 2022) coupon = 0.027 freq_type = FrequencyTypes.SEMI_ANNUAL accrual_type = DayCountTypes.THIRTY_E_360_ISDA face = 100.0 bond = Bond(issue_date, maturity_date, coupon, freq_type, accrual_type, face) testCases.header("FIELD", "VALUE") clean_price = 101.581564 yld = bond.current_yield(clean_price) testCases.print("Current Yield", yld) ytm = bond.yield_to_maturity(settlement_date, clean_price, YTMCalcType.UK_DMO) testCases.print("UK DMO Yield To Maturity", ytm) ytm = bond.yield_to_maturity(settlement_date, clean_price, YTMCalcType.US_STREET) testCases.print("US STREET Yield To Maturity", ytm) ytm = bond.yield_to_maturity(settlement_date, clean_price, YTMCalcType.US_TREASURY) testCases.print("US TREASURY Yield To Maturity", ytm) full_price = bond.full_price_from_ytm(settlement_date, ytm) testCases.print("Full Price", full_price) clean_price = bond.clean_price_from_ytm(settlement_date, ytm) testCases.print("Clean Price", clean_price) accddays = bond._accrued_days testCases.print("Accrued Days", accddays) accrued_interest = bond._accrued_interest testCases.print("Accrued", accrued_interest) duration = bond.dollar_duration(settlement_date, ytm) testCases.print("Dollar Duration", duration) modified_duration = bond.modified_duration(settlement_date, ytm) testCases.print("Modified Duration", modified_duration) macauley_duration = bond.macauley_duration(settlement_date, ytm) testCases.print("Macauley Duration", macauley_duration) conv = bond.convexity_from_ytm(settlement_date, ytm) testCases.print("Convexity", conv)
import pandas as pd path = os.path.join(os.path.dirname(__file__), './data/giltBondPrices.txt') bondDataFrame = pd.read_csv(path, sep='\t') bondDataFrame['mid'] = 0.5 * (bondDataFrame['bid'] + bondDataFrame['ask']) freq_type = FrequencyTypes.SEMI_ANNUAL accrual_type = DayCountTypes.ACT_ACT_ICMA settlement = Date(19, 9, 2012) bonds = [] clean_prices = [] for _, bondRow in bondDataFrame.iterrows(): date_string = bondRow['maturity'] matDatetime = dt.datetime.strptime(date_string, '%d-%b-%y') maturityDt = from_datetime(matDatetime) issueDt = Date(maturityDt._d, maturityDt._m, 2000) coupon = bondRow['coupon'] / 100.0 clean_price = bondRow['mid'] bond = Bond(issueDt, maturityDt, coupon, freq_type, accrual_type) bonds.append(bond) clean_prices.append(clean_price) bondCurve = BondZeroCurve(settlement, bonds, clean_prices) def test_zero_curve(): maturityDt = Date(7, 3, 2013) zero_rate = bondCurve.zero_rate(maturityDt) assert round(zero_rate, 4) == 0.0022