예제 #1
0
 def dual_basis(self):
     # Return Q with x.indices already a free index for the
     # consumer to use
     # expensive numerical extraction is done once per element
     # instance, but the point set must be created every time we
     # build the dual.
     Q, pts = self._dual_basis
     x = PointSet(pts)
     assert len(x.indices) == 1
     assert Q.shape[1] == x.indices[0].extent
     i, *js = gem.indices(len(Q.shape) - 1)
     Q = gem.ComponentTensor(gem.Indexed(Q, (i, *x.indices, *js)), (i, *js))
     return Q, x
예제 #2
0
def factor_point_set(product_cell, product_dim, point_set):
    """Factors a point set for the product element into a point sets for
    each subelement.

    :arg product_cell: a TensorProductCell
    :arg product_dim: entity dimension for the product cell
    :arg point_set: point set for the product element
    """
    assert len(product_cell.cells) == len(product_dim)
    point_dims = [
        cell.construct_subelement(dim).get_spatial_dimension()
        for cell, dim in zip(product_cell.cells, product_dim)
    ]

    if isinstance(point_set, TensorPointSet):
        # Just give the factors asserting matching dimensions.
        assert len(point_set.factors) == len(point_dims)
        assert all(ps.dimension == dim
                   for ps, dim in zip(point_set.factors, point_dims))
        return point_set.factors

    # Split the point coordinates along the point dimensions
    # required by the subelements.
    assert point_set.dimension == sum(point_dims)
    slices = TensorProductCell._split_slices(point_dims)

    if isinstance(point_set, PointSingleton):
        return [PointSingleton(point_set.point[s]) for s in slices]
    elif isinstance(point_set, PointSet):
        # Use the same point index for the new point sets.
        result = []
        for s in slices:
            ps = PointSet(point_set.points[:, s])
            ps.indices = point_set.indices
            result.append(ps)
        return result

    raise NotImplementedError("How to tabulate TensorProductElement on %s?" %
                              (type(point_set).__name__, ))
예제 #3
0
def translate_cell_vertices(terminal, mt, ctx):
    coords = SpatialCoordinate(terminal.ufl_domain())
    ufl_expr = construct_modified_terminal(mt, coords)
    ps = PointSet(numpy.array(ctx.fiat_cell.get_vertices()))

    config = {name: getattr(ctx, name)
              for name in ["ufl_cell", "precision", "index_cache"]}
    config.update(interface=ctx, point_set=ps)
    context = PointSetContext(**config)
    expr = context.translator(ufl_expr)

    # Wrap up point (vertex) index
    c = gem.Index()
    return gem.ComponentTensor(gem.Indexed(expr, (c,)), ps.indices + (c,))
예제 #4
0
def factor_point_set(product_cell, product_dim, point_set):
    """Factors a point set for the product element into a point sets for
    each subelement.

    :arg product_cell: a TensorProductCell
    :arg product_dim: entity dimension for the product cell
    :arg point_set: point set for the product element
    """
    assert len(product_cell.cells) == len(product_dim)
    point_dims = [cell.construct_subelement(dim).get_spatial_dimension()
                  for cell, dim in zip(product_cell.cells, product_dim)]

    if isinstance(point_set, TensorPointSet):
        # Just give the factors asserting matching dimensions.
        assert len(point_set.factors) == len(point_dims)
        assert all(ps.dimension == dim
                   for ps, dim in zip(point_set.factors, point_dims))
        return point_set.factors

    # Split the point coordinates along the point dimensions
    # required by the subelements.
    assert point_set.dimension == sum(point_dims)
    slices = TensorProductCell._split_slices(point_dims)

    if isinstance(point_set, PointSingleton):
        return [PointSingleton(point_set.point[s]) for s in slices]
    elif isinstance(point_set, PointSet):
        # Use the same point index for the new point sets.
        result = []
        for s in slices:
            ps = PointSet(point_set.points[:, s])
            ps.indices = point_set.indices
            result.append(ps)
        return result

    raise NotImplementedError("How to tabulate TensorProductElement on %s?" % (type(point_set).__name__,))
예제 #5
0
파일: quadrature.py 프로젝트: FInAT/FInAT
def make_quadrature(ref_el, degree, scheme="default"):
    """
    Generate quadrature rule for given reference element
    that will integrate an polynomial of order 'degree' exactly.

    For low-degree (<=6) polynomials on triangles and tetrahedra, this
    uses hard-coded rules, otherwise it falls back to a collapsed
    Gauss scheme on simplices.  On tensor-product cells, it is a
    tensor-product quadrature rule of the subcells.

    :arg ref_el: The FIAT cell to create the quadrature for.
    :arg degree: The degree of polynomial that the rule should
        integrate exactly.
    """
    if ref_el.get_shape() == TENSORPRODUCT:
        try:
            degree = tuple(degree)
        except TypeError:
            degree = (degree, ) * len(ref_el.cells)

        assert len(ref_el.cells) == len(degree)
        quad_rules = [
            make_quadrature(c, d, scheme)
            for c, d in zip(ref_el.cells, degree)
        ]
        return TensorProductQuadratureRule(quad_rules)

    if ref_el.get_shape() == QUADRILATERAL:
        return make_quadrature(ref_el.product, degree, scheme)

    if degree < 0:
        raise ValueError("Need positive degree, not %d" % degree)

    if ref_el.get_shape() == LINE:
        # FIAT uses Gauss-Legendre line quadature, however, since we
        # symbolically label it as such, we wish not to risk attaching
        # the wrong label in case FIAT changes.  So we explicitly ask
        # for Gauss-Legendre line quadature.
        num_points = (degree + 1 + 1) // 2  # exact integration
        fiat_rule = GaussLegendreQuadratureLineRule(ref_el, num_points)
        point_set = GaussLegendrePointSet(fiat_rule.get_points())
        return QuadratureRule(point_set, fiat_rule.get_weights())

    fiat_rule = fiat_scheme(ref_el, degree, scheme)
    return QuadratureRule(PointSet(fiat_rule.get_points()),
                          fiat_rule.get_weights())
예제 #6
0
파일: driver.py 프로젝트: miklos1/tsfc
def compile_expression_at_points(expression, points, coordinates, parameters=None):
    """Compiles a UFL expression to be evaluated at compile-time known
    reference points.  Useful for interpolating UFL expressions onto
    function spaces with only point evaluation nodes.

    :arg expression: UFL expression
    :arg points: reference coordinates of the evaluation points
    :arg coordinates: the coordinate function
    :arg parameters: parameters object
    """
    import coffee.base as ast

    if parameters is None:
        parameters = default_parameters()
    else:
        _ = default_parameters()
        _.update(parameters)
        parameters = _

    # No arguments, please!
    if extract_arguments(expression):
        return ValueError("Cannot interpolate UFL expression with Arguments!")

    # Apply UFL preprocessing
    expression = ufl_utils.preprocess_expression(expression)

    # Initialise kernel builder
    builder = firedrake_interface.ExpressionKernelBuilder()

    # Replace coordinates (if any)
    domain = expression.ufl_domain()
    if domain:
        assert coordinates.ufl_domain() == domain
        builder.domain_coordinate[domain] = coordinates

    # Collect required coefficients
    coefficients = extract_coefficients(expression)
    if has_type(expression, GeometricQuantity):
        coefficients = [coordinates] + coefficients
    builder.set_coefficients(coefficients)

    # Split mixed coefficients
    expression = ufl_utils.split_coefficients(expression, builder.coefficient_split)

    # Translate to GEM
    point_set = PointSet(points)
    config = dict(interface=builder,
                  ufl_cell=coordinates.ufl_domain().ufl_cell(),
                  precision=parameters["precision"],
                  point_set=point_set)
    ir, = fem.compile_ufl(expression, point_sum=False, **config)

    # Deal with non-scalar expressions
    value_shape = ir.shape
    tensor_indices = tuple(gem.Index() for s in value_shape)
    if value_shape:
        ir = gem.Indexed(ir, tensor_indices)

    # Build kernel body
    return_shape = (len(points),) + value_shape
    return_indices = point_set.indices + tensor_indices
    return_var = gem.Variable('A', return_shape)
    return_arg = ast.Decl(SCALAR_TYPE, ast.Symbol('A', rank=return_shape))
    return_expr = gem.Indexed(return_var, return_indices)
    ir, = impero_utils.preprocess_gem([ir])
    impero_c = impero_utils.compile_gem([(return_expr, ir)], return_indices)
    point_index, = point_set.indices
    body = generate_coffee(impero_c, {point_index: 'p'}, parameters["precision"])

    # Handle cell orientations
    if builder.needs_cell_orientations([ir]):
        builder.require_cell_orientations()

    # Build kernel tuple
    return builder.construct_kernel(return_arg, body)
예제 #7
0
 def point_set(self):
     return PointSet(self._points)
예제 #8
0
파일: fem.py 프로젝트: jmv2009/tsfc
 def physical_vertices(self):
     vs = PointSet(self.interface.fiat_cell.vertices)
     return self.physical_points(vs)
예제 #9
0
파일: driver.py 프로젝트: knut0815/tsfc
def compile_expression_at_points(expression,
                                 points,
                                 coordinates,
                                 interface=None,
                                 parameters=None,
                                 coffee=True):
    """Compiles a UFL expression to be evaluated at compile-time known
    reference points.  Useful for interpolating UFL expressions onto
    function spaces with only point evaluation nodes.

    :arg expression: UFL expression
    :arg points: reference coordinates of the evaluation points
    :arg coordinates: the coordinate function
    :arg interface: backend module for the kernel interface
    :arg parameters: parameters object
    :arg coffee: compile coffee kernel instead of loopy kernel
    """
    import coffee.base as ast
    import loopy as lp

    if parameters is None:
        parameters = default_parameters()
    else:
        _ = default_parameters()
        _.update(parameters)
        parameters = _

    # Determine whether in complex mode
    complex_mode = is_complex(parameters["scalar_type"])

    # Apply UFL preprocessing
    expression = ufl_utils.preprocess_expression(expression,
                                                 complex_mode=complex_mode)

    # Initialise kernel builder
    if interface is None:
        if coffee:
            import tsfc.kernel_interface.firedrake as firedrake_interface_coffee
            interface = firedrake_interface_coffee.ExpressionKernelBuilder
        else:
            # Delayed import, loopy is a runtime dependency
            import tsfc.kernel_interface.firedrake_loopy as firedrake_interface_loopy
            interface = firedrake_interface_loopy.ExpressionKernelBuilder

    builder = interface(parameters["scalar_type"])
    arguments = extract_arguments(expression)
    argument_multiindices = tuple(
        builder.create_element(arg.ufl_element()).get_indices()
        for arg in arguments)

    # Replace coordinates (if any)
    domain = expression.ufl_domain()
    if domain:
        assert coordinates.ufl_domain() == domain
        builder.domain_coordinate[domain] = coordinates
        builder.set_cell_sizes(domain)

    # Collect required coefficients
    coefficients = extract_coefficients(expression)
    if has_type(expression, GeometricQuantity) or any(
            fem.needs_coordinate_mapping(c.ufl_element())
            for c in coefficients):
        coefficients = [coordinates] + coefficients
    builder.set_coefficients(coefficients)

    # Split mixed coefficients
    expression = ufl_utils.split_coefficients(expression,
                                              builder.coefficient_split)

    # Translate to GEM
    point_set = PointSet(points)
    config = dict(interface=builder,
                  ufl_cell=coordinates.ufl_domain().ufl_cell(),
                  precision=parameters["precision"],
                  point_set=point_set,
                  argument_multiindices=argument_multiindices)
    ir, = fem.compile_ufl(expression, point_sum=False, **config)

    # Deal with non-scalar expressions
    value_shape = ir.shape
    tensor_indices = tuple(gem.Index() for s in value_shape)
    if value_shape:
        ir = gem.Indexed(ir, tensor_indices)

    # Build kernel body
    return_indices = point_set.indices + tensor_indices + tuple(
        chain(*argument_multiindices))
    return_shape = tuple(i.extent for i in return_indices)
    return_var = gem.Variable('A', return_shape)
    if coffee:
        return_arg = ast.Decl(parameters["scalar_type"],
                              ast.Symbol('A', rank=return_shape))
    else:
        return_arg = lp.GlobalArg("A",
                                  dtype=parameters["scalar_type"],
                                  shape=return_shape)

    return_expr = gem.Indexed(return_var, return_indices)
    ir, = impero_utils.preprocess_gem([ir])
    impero_c = impero_utils.compile_gem([(return_expr, ir)], return_indices)
    point_index, = point_set.indices

    # Handle kernel interface requirements
    builder.register_requirements([ir])
    # Build kernel tuple
    return builder.construct_kernel(return_arg, impero_c,
                                    parameters["precision"],
                                    {point_index: 'p'})
예제 #10
0
def ps(cell):
    if cell == "tet":
        return PointSet([[1 / 3, 1 / 4, 1 / 5]])
    elif cell == "quad":
        return PointSet([[1 / 3, 1 / 4]])
예제 #11
0
파일: driver.py 프로젝트: jmv2009/tsfc
def compile_expression_dual_evaluation(expression,
                                       to_element,
                                       *,
                                       domain=None,
                                       interface=None,
                                       parameters=None,
                                       coffee=False):
    """Compile a UFL expression to be evaluated against a compile-time known reference element's dual basis.

    Useful for interpolating UFL expressions into e.g. N1curl spaces.

    :arg expression: UFL expression
    :arg to_element: A FInAT element for the target space
    :arg domain: optional UFL domain the expression is defined on (required when expression contains no domain).
    :arg interface: backend module for the kernel interface
    :arg parameters: parameters object
    :arg coffee: compile coffee kernel instead of loopy kernel
    """
    import coffee.base as ast
    import loopy as lp

    # Just convert FInAT element to FIAT for now.
    # Dual evaluation in FInAT will bring a thorough revision.
    to_element = to_element.fiat_equivalent

    if any(len(dual.deriv_dict) != 0 for dual in to_element.dual_basis()):
        raise NotImplementedError(
            "Can only interpolate onto dual basis functionals without derivative evaluation, sorry!"
        )

    if parameters is None:
        parameters = default_parameters()
    else:
        _ = default_parameters()
        _.update(parameters)
        parameters = _

    # Determine whether in complex mode
    complex_mode = is_complex(parameters["scalar_type"])

    # Find out which mapping to apply
    try:
        mapping, = set(to_element.mapping())
    except ValueError:
        raise NotImplementedError(
            "Don't know how to interpolate onto zany spaces, sorry")
    expression = apply_mapping(expression, mapping, domain)

    # Apply UFL preprocessing
    expression = ufl_utils.preprocess_expression(expression,
                                                 complex_mode=complex_mode)

    # Initialise kernel builder
    if interface is None:
        if coffee:
            import tsfc.kernel_interface.firedrake as firedrake_interface_coffee
            interface = firedrake_interface_coffee.ExpressionKernelBuilder
        else:
            # Delayed import, loopy is a runtime dependency
            import tsfc.kernel_interface.firedrake_loopy as firedrake_interface_loopy
            interface = firedrake_interface_loopy.ExpressionKernelBuilder

    builder = interface(parameters["scalar_type"])
    arguments = extract_arguments(expression)
    argument_multiindices = tuple(
        builder.create_element(arg.ufl_element()).get_indices()
        for arg in arguments)

    # Replace coordinates (if any) unless otherwise specified by kwarg
    if domain is None:
        domain = expression.ufl_domain()
    assert domain is not None

    # Collect required coefficients
    first_coefficient_fake_coords = False
    coefficients = extract_coefficients(expression)
    if has_type(expression, GeometricQuantity) or any(
            fem.needs_coordinate_mapping(c.ufl_element())
            for c in coefficients):
        # Create a fake coordinate coefficient for a domain.
        coords_coefficient = ufl.Coefficient(
            ufl.FunctionSpace(domain, domain.ufl_coordinate_element()))
        builder.domain_coordinate[domain] = coords_coefficient
        builder.set_cell_sizes(domain)
        coefficients = [coords_coefficient] + coefficients
        first_coefficient_fake_coords = True
    builder.set_coefficients(coefficients)

    # Split mixed coefficients
    expression = ufl_utils.split_coefficients(expression,
                                              builder.coefficient_split)

    # Translate to GEM
    kernel_cfg = dict(
        interface=builder,
        ufl_cell=domain.ufl_cell(),
        # FIXME: change if we ever implement
        # interpolation on facets.
        integral_type="cell",
        argument_multiindices=argument_multiindices,
        index_cache={},
        scalar_type=parameters["scalar_type"])

    if all(
            isinstance(dual, PointEvaluation)
            for dual in to_element.dual_basis()):
        # This is an optimisation for point-evaluation nodes which
        # should go away once FInAT offers the interface properly
        qpoints = []
        # Everything is just a point evaluation.
        for dual in to_element.dual_basis():
            ptdict = dual.get_point_dict()
            qpoint, = ptdict.keys()
            (qweight, component), = ptdict[qpoint]
            assert allclose(qweight, 1.0)
            assert component == ()
            qpoints.append(qpoint)
        point_set = PointSet(qpoints)
        config = kernel_cfg.copy()
        config.update(point_set=point_set)

        # Allow interpolation onto QuadratureElements to refer to the quadrature
        # rule they represent
        if isinstance(to_element, FIAT.QuadratureElement):
            assert allclose(asarray(qpoints), asarray(to_element._points))
            quad_rule = QuadratureRule(point_set, to_element._weights)
            config["quadrature_rule"] = quad_rule

        expr, = fem.compile_ufl(expression, **config, point_sum=False)
        # In some cases point_set.indices may be dropped from expr, but nothing
        # new should now appear
        assert set(expr.free_indices) <= set(
            chain(point_set.indices, *argument_multiindices))
        shape_indices = tuple(gem.Index() for _ in expr.shape)
        basis_indices = point_set.indices
        ir = gem.Indexed(expr, shape_indices)
    else:
        # This is general code but is more unrolled than necssary.
        dual_expressions = []  # one for each functional
        broadcast_shape = len(expression.ufl_shape) - len(
            to_element.value_shape())
        shape_indices = tuple(gem.Index()
                              for _ in expression.ufl_shape[:broadcast_shape])
        expr_cache = {}  # Sharing of evaluation of the expression at points
        for dual in to_element.dual_basis():
            pts = tuple(sorted(dual.get_point_dict().keys()))
            try:
                expr, point_set = expr_cache[pts]
            except KeyError:
                point_set = PointSet(pts)
                config = kernel_cfg.copy()
                config.update(point_set=point_set)
                expr, = fem.compile_ufl(expression, **config, point_sum=False)
                # In some cases point_set.indices may be dropped from expr, but
                # nothing new should now appear
                assert set(expr.free_indices) <= set(
                    chain(point_set.indices, *argument_multiindices))
                expr = gem.partial_indexed(expr, shape_indices)
                expr_cache[pts] = expr, point_set
            weights = collections.defaultdict(list)
            for p in pts:
                for (w, cmp) in dual.get_point_dict()[p]:
                    weights[cmp].append(w)
            qexprs = gem.Zero()
            for cmp in sorted(weights):
                qweights = gem.Literal(weights[cmp])
                qexpr = gem.Indexed(expr, cmp)
                qexpr = gem.index_sum(
                    gem.Indexed(qweights, point_set.indices) * qexpr,
                    point_set.indices)
                qexprs = gem.Sum(qexprs, qexpr)
            assert qexprs.shape == ()
            assert set(qexprs.free_indices) == set(
                chain(shape_indices, *argument_multiindices))
            dual_expressions.append(qexprs)
        basis_indices = (gem.Index(), )
        ir = gem.Indexed(gem.ListTensor(dual_expressions), basis_indices)

    # Build kernel body
    return_indices = basis_indices + shape_indices + tuple(
        chain(*argument_multiindices))
    return_shape = tuple(i.extent for i in return_indices)
    return_var = gem.Variable('A', return_shape)
    if coffee:
        return_arg = ast.Decl(parameters["scalar_type"],
                              ast.Symbol('A', rank=return_shape))
    else:
        return_arg = lp.GlobalArg("A",
                                  dtype=parameters["scalar_type"],
                                  shape=return_shape)

    return_expr = gem.Indexed(return_var, return_indices)

    # TODO: one should apply some GEM optimisations as in assembly,
    # but we don't for now.
    ir, = impero_utils.preprocess_gem([ir])
    impero_c = impero_utils.compile_gem([(return_expr, ir)], return_indices)
    index_names = dict(
        (idx, "p%d" % i) for (i, idx) in enumerate(basis_indices))
    # Handle kernel interface requirements
    builder.register_requirements([ir])
    # Build kernel tuple
    return builder.construct_kernel(return_arg, impero_c, index_names,
                                    first_coefficient_fake_coords)