def load_gexpressions(idList, labelList, percentage): os.getcwd() #Para conocer el directorio actual # Connect to database to obtain data according to idList ids res = pa.runNorm(idList, 'webapp/[email protected]:1521') # convert data to proper dataframe cont = 0 df = pd.DataFrame(index=res[cont].tolist()) for i in labelList: cont += 1 df[i] = res[cont].tolist() ## obtain unstable genes ngenes = int(df.index.size * percentage) unstable_genes = fs.findUnstable(df.values, ngenes) ## select unstable genes from dataframe to plot M = pd.DataFrame() for g in unstable_genes: M = pd.concat([M, df.iloc[[g]]]) # transform to zscope in axis 1 (rows) dfzs1 = sst.zscore(M.values, axis=1, ddof=1) dfz = pd.DataFrame(index=M.index, data=dfzs1, columns=labelList) return dfz
def generate_heatmap(idList, labelList, percentage): path = os.getcwd() # Connect to database to obtain data according to idList ids res = pa.runNorm(idList, 'webapp/[email protected]:1521') # convert data to proper dataframe cont = 0 df = pd.DataFrame(index=res[cont].tolist()) for i in labelList: cont += 1 df[i] = res[cont].tolist() ## obtain unstable genes ngenes = int(df.index.size * percentage) unstable_genes = fs.findUnstable(df.values, ngenes) ## select unstable genes from dataframe to plot M = pd.DataFrame() for g in unstable_genes: M = pd.concat([M, df.iloc[[g]]]) # transform to zscope in axis 1 (rows) dfzs1 = sst.zscore(M.values, axis=1, ddof=1) dfz = pd.DataFrame(index=M.index, data=dfzs1, columns=labelList) # generate hetmap plot # add colored label #sns_plot = sns.clustermap(dfz, figsize=(len(labelList)/2, ngenes/2), cmap='viridis', metric="correlation", row_colors=row_colors) sns_plot = sns.clustermap(dfz, figsize=(ngenes / 3, ngenes / 2), cmap='viridis') #obtain time stamp ts = time.time() st = datetime.fromtimestamp(ts).strftime('%Y-%m-%d_%H%M%S') #save figure with hetmap figpath = path + "\\output_" + st + ".png" sns_plot.savefig(figpath) return figpath
df['E2'] = res[2].tolist() df['E3'] = res[3].tolist() df['E20'] = res[4].tolist() df['E21'] = res[5].tolist() df['E22'] = res[6].tolist() df['E25'] = res[7].tolist() df['E31'] = res[8].tolist() df['E32'] = res[9].tolist() sns.clustermap(df, figsize=(5, 100), cmap='viridis') df.describe() df.to_csv('dataset.csv') unstable_genes = fs.findUnstable(df.values, 100) M = pd.DataFrame() for g in unstable_genes: M = pd.concat([M, df.iloc[[g]]]) sns.clustermap(M, figsize=(5, 50), cmap='viridis') # ============================================================================= # df=pd.DataFrame(index=res[0].tolist(),data=sst.zscore(res[1],axis=0, ddof=1).tolist(),columns=['E1']) # 1st row as the column names # df['E2']=sst.zscore(res[2],axis=1, ddof=10).tolist() # df['E3']=sst.zscore(res[3],axis=1, ddof=10).tolist() # df['E20']=sst.zscore(res[4],axis=1, ddof=10).tolist() # df['E21']=sst.zscore(res[5],axis=1, ddof=10).tolist() # df['E22']=sst.zscore(res[6],axis=1, ddof=10).tolist() # df['E25']=sst.zscore(res[7],axis=1, ddof=10).tolist()