예제 #1
0
def test_end2end_mobilenet_streamline():
    model = load_test_checkpoint_or_skip(build_dir +
                                         "/end2end_mobilenet_tidy.onnx")
    model = model.transform(Streamline())
    additional_streamline_transformations = [
        DoubleToSingleFloat(),
        reorder.MoveMulPastDWConv(),
        absorb.AbsorbMulIntoMultiThreshold(),
        ChangeDataLayoutQuantAvgPool2d(),
        InferDataLayouts(),
        reorder.MoveTransposePastScalarMul(),
        absorb.AbsorbTransposeIntoFlatten(),
        reorder.MoveFlattenPastAffine(),
        reorder.MoveFlattenPastTopK(),
        reorder.MoveScalarMulPastMatMul(),
        CollapseRepeatedMul(),
        RemoveIdentityOps(),
        RoundAndClipThresholds(),
    ]
    for trn in additional_streamline_transformations:
        model = model.transform(trn)
        model = model.transform(GiveUniqueNodeNames())
        model = model.transform(GiveReadableTensorNames())
        model = model.transform(InferDataTypes())
    model.save(build_dir + "/end2end_mobilenet_streamlined.onnx")
    assert (len(model.get_nodes_by_op_type("Add")) == 1
            )  # only final quantized bias Add op remains
    assert len(model.get_nodes_by_op_type("Mul")) == 0  # no Mul ops remain
예제 #2
0
def test_end2end_tfc_w1a1_convert_to_hls_layers():
    model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_streamlined.onnx")
    model = model.transform(ConvertBipolarMatMulToXnorPopcount())
    model = model.transform(absorb.AbsorbAddIntoMultiThreshold())
    model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
    model = model.transform(RoundAndClipThresholds())
    model = model.transform(to_hls.InferBinaryStreamingFCLayer())
    model.save(build_dir + "/end2end_tfc_w1a1_hls_layers.onnx")
예제 #3
0
def streamline(model, binary=True):
    log("Streamline transformations launched")
    model = model.transform(MoveScalarLinearPastInvariants())
    model = model.transform(Streamline())
    # Absorb add and mul in thresholds
    model = model.transform(absorb.AbsorbAddIntoMultiThreshold())
    model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
    # Absorb add-mul in top-k
    model = model.transform(absorb.AbsorbScalarMulAddIntoTopK())
    model = model.transform(RoundAndClipThresholds())
    # Tidy-up
    model = model.transform(InferDataLayouts())
    model = model.transform(RemoveUnusedTensors())
    log("Streamline transformations completed")
    save(model, "3_streamlined")
    return model
예제 #4
0
def step_mobilenet_streamline(model: ModelWrapper, cfg: DataflowBuildConfig):
    model = model.transform(Streamline())
    additional_streamline_transformations = [
        DoubleToSingleFloat(),
        reorder.MoveMulPastDWConv(),
        absorb.AbsorbMulIntoMultiThreshold(),
        ChangeDataLayoutQuantAvgPool2d(),
        InferDataLayouts(),
        reorder.MoveTransposePastScalarMul(),
        absorb.AbsorbTransposeIntoFlatten(),
        reorder.MoveFlattenPastAffine(),
        reorder.MoveFlattenPastTopK(),
        reorder.MoveScalarMulPastMatMul(),
        CollapseRepeatedMul(),
        RemoveIdentityOps(),
        RoundAndClipThresholds(),
    ]
    for trn in additional_streamline_transformations:
        model = model.transform(trn)
        model = model.transform(GiveUniqueNodeNames())
        model = model.transform(GiveReadableTensorNames())
        model = model.transform(InferDataTypes())
    return model
예제 #5
0
def test_convert_to_hls_layers_tfc_w1a1():
    tfc = get_test_model_trained("TFC", 1, 1)
    bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path)
    model = ModelWrapper(export_onnx_path)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    model = model.transform(Streamline())
    model = model.transform(ConvertBipolarMatMulToXnorPopcount())
    model = model.transform(absorb.AbsorbAddIntoMultiThreshold())
    model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
    model = model.transform(RoundAndClipThresholds())
    model = model.transform(to_hls.InferBinaryStreamingFCLayer())
    fc0 = model.graph.node[2]
    assert fc0.op_type == "StreamingFCLayer_Batch"
    assert model.get_tensor_shape(fc0.input[0]) == [1, 784]
    assert model.get_tensor_shape(fc0.input[1]) == [784, 64]
    assert model.get_tensor_shape(fc0.input[2]) == [64, 1]
    fc1 = model.graph.node[3]
    assert fc1.op_type == "StreamingFCLayer_Batch"
    assert model.get_tensor_shape(fc1.input[0]) == [1, 64]
    assert model.get_tensor_shape(fc1.input[1]) == [64, 64]
    assert model.get_tensor_shape(fc1.input[2]) == [64, 1]
    fc2 = model.graph.node[4]
    assert fc2.op_type == "StreamingFCLayer_Batch"
    assert model.get_tensor_shape(fc2.input[0]) == [1, 64]
    assert model.get_tensor_shape(fc2.input[1]) == [64, 64]
    assert model.get_tensor_shape(fc2.input[2]) == [64, 1]
    fc3 = model.graph.node[5]
    assert fc3.op_type == "StreamingFCLayer_Batch"
    assert model.get_tensor_shape(fc3.input[0]) == [1, 64]
    assert model.get_tensor_shape(fc3.input[1]) == [64, 10]

    fc0w = getCustomOp(fc0)
    fc0w.set_nodeattr("SIMD", 784)
    fc0w.set_nodeattr("PE", 16)

    fc1w = getCustomOp(fc1)
    fc1w.set_nodeattr("SIMD", 16)
    fc1w.set_nodeattr("PE", 16)

    fc2w = getCustomOp(fc2)
    fc2w.set_nodeattr("SIMD", 16)
    fc2w.set_nodeattr("PE", 16)

    fc3w = getCustomOp(fc3)
    fc3w.set_nodeattr("SIMD", 16)
    fc3w.set_nodeattr("PE", 10)

    model = model.transform(PrepareCppSim())
    model = model.transform(CompileCppSim())
    model = model.transform(SetExecMode("cppsim"))

    raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    # run using FINN-based execution
    input_dict = {"global_in": nph.to_array(input_tensor)}
    output_dict = oxe.execute_onnx(model, input_dict)
    produced = output_dict[list(output_dict.keys())[0]]
    # run using PyTorch/Brevitas
    input_tensor = torch.from_numpy(nph.to_array(input_tensor)).float()
    assert input_tensor.shape == (1, 1, 28, 28)
    # do forward pass in PyTorch/Brevitas
    expected = tfc.forward(input_tensor).detach().numpy()
    assert np.isclose(produced, expected, atol=1e-3).all()
    os.remove(export_onnx_path)