예제 #1
0
L = 1.
nx = 256
cfl = 0.1
initialRadius = L / 4.
k = 1
dx = L / nx
steps = 10 * nx / 8

mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = nx)

error = CellVariable(mesh=mesh)


distanceVariable = DistanceVariable(
    name = 'level set variable',
    mesh = mesh,
    value = numerix.sqrt((mesh.getCellCenters()[:,0] - L / 2.)**2 + (mesh.getCellCenters()[:,1] - L / 2.)**2) - initialRadius,
    hasOld = 1)

initialSurfactantValue =  1.

surfactantVariable = SurfactantVariable(
    value = initialSurfactantValue,
    distanceVar = distanceVariable
    )

velocity = 1.

surfactantEquation = SurfactantEquation(
    distanceVar = distanceVariable)
예제 #2
0
파일: expandingCircle.py 프로젝트: ghorn/Eg
from fipy.variables.cellVariable import CellVariable

L = 1.
nx = 50
cfl = 0.1
initialRadius = L / 4.
k = 1
dx = L / nx
steps = 20

mesh = Grid2D(dx=dx, dy=dx, nx=nx, ny=nx)

distanceVariable = DistanceVariable(
    name='level set variable',
    mesh=mesh,
    value=numerix.sqrt((mesh.getCellCenters()[:, 0] - L / 2.)**2 +
                       (mesh.getCellCenters()[:, 1] - L / 2.)**2) -
    initialRadius,
    hasOld=1)

initialSurfactantValue = 1.

surfactantVariable = SurfactantVariable(value=initialSurfactantValue,
                                        distanceVar=distanceVariable)

velocity = CellVariable(
    name='velocity',
    mesh=mesh,
    value=1.,
)
예제 #3
0
파일: inputSquare.py 프로젝트: ghorn/Eg
distanceToTravel = L / 5.
boxSize = .2

nx = int(L / dx)
ny = int(L / dx)

steps = int(distanceToTravel / dx / cfl)

timeStepDuration = cfl * dx / velocity

mesh = Grid2D(dx=dx, dy=dx, nx=nx, ny=ny)

x0 = (L - boxSize) / 2
x1 = (L + boxSize) / 2

distanceVariable = DistanceVariable(mesh=mesh, value=1, hasOld=1)

x, y = mesh.getCellCenters()[..., 0], mesh.getCellCenters()[..., 1]
distanceVariable.setValue(-1,
                          where=((x0 < x) & (x < x1)) & ((x0 < y) & (y < x1)))

surfactantVariable = SurfactantVariable(distanceVar=distanceVariable, value=1.)

surfactantEquation = SurfactantEquation(distanceVar=distanceVariable)

advectionEquation = buildHigherOrderAdvectionEquation(advectionCoeff=velocity)

if __name__ == '__main__':
    import fipy.viewers
    distanceViewer = fipy.viewers.make(vars=distanceVariable,
                                       limits={
예제 #4
0
파일: inputSquare.py 프로젝트: ghorn/Eg
nx = int(L / dx)
ny = int(L / dx)

steps = int(distanceToTravel / dx / cfl)

timeStepDuration = cfl * dx / velocity

mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = ny)

x0 = (L - boxSize) / 2
x1 = (L + boxSize) / 2

distanceVariable = DistanceVariable(
    mesh = mesh,
    value = 1,
    hasOld = 1
    )

x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
distanceVariable.setValue(-1, where=((x0 < x) & (x < x1)) & ((x0 < y) & (y < x1)))


surfactantVariable = SurfactantVariable(
    distanceVar = distanceVariable,
    value = 1.
    )

surfactantEquation = SurfactantEquation(
    distanceVar = distanceVariable)
예제 #5
0
from fipy.variables.cellVariable import CellVariable
from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable

dx = 0.5
dy = 2.
nx = 5
ny = 5

Lx = nx * dx
Ly = ny * dy

mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

var = DistanceVariable(
    name = 'level set variable',
    mesh = mesh,
    value = -1,
    hasOld = 1
    )

x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
var.setValue(1, where=((Lx / 3. < x) & (x < 2. * Lx / 3.)) & ((Ly / 3. < y) & (y < 2. * Ly / 3)))

var.calcDistanceFunction()

if __name__ == '__main__':
    import fipy.viewers
    viewer = fipy.viewers.make(vars = var, limits = {'maxval': -5., 'minval': 5.})
    viewer.plot()
    raw_input('finished')
예제 #6
0
파일: input.py 프로젝트: ghorn/Eg
dy = 1.
nx = 5
ny = 5

Lx = nx * dx
Ly = ny * dy

mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

initialArray = -numerix.ones(nx * ny, 'd')

positiveCells = mesh.getCells(filter = lambda cell: (cell.getCenter()[0] < dx) or (cell.getCenter()[0] > (Lx - dx)) or (cell.getCenter()[1] < dy) or (cell.getCenter()[1] > (Ly - dy)))

for cell in positiveCells:
    initialArray[cell.getID()] = 1.

var = DistanceVariable(
    name = 'level set variable',
    mesh = mesh,
    value = initialArray,
    hasOld = 1
    )

var.calcDistanceFunction()

if __name__ == '__main__':
    import fipy.viewers
    viewer = fipy.viewers.make(vars = var, limits = {'datamin': -5., 'datamax': 5.})
    viewer.plot()
    raw_input('finished')
예제 #7
0
파일: expandingCircle.py 프로젝트: ghorn/Eg
from fipy.models.levelSet.surfactant.surfactantVariable import SurfactantVariable
from fipy.variables.cellVariable import CellVariable

L = 1.
nx = 50
cfl = 0.1
initialRadius = L / 4.
k = 1
dx = L / nx
steps = 20

mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = nx)

distanceVariable = DistanceVariable(
    name = 'level set variable',
    mesh = mesh,
    value = numerix.sqrt((mesh.getCellCenters()[:,0] - L / 2.)**2 + (mesh.getCellCenters()[:,1] - L / 2.)**2) - initialRadius,
    hasOld = 1)

initialSurfactantValue =  1.

surfactantVariable = SurfactantVariable(
    value = initialSurfactantValue,
    distanceVar = distanceVariable
    )

velocity = CellVariable(
    name = 'velocity',
    mesh = mesh,
    value = 1.,
    )
예제 #8
0
파일: inputLeveler.py 프로젝트: ghorn/Eg
def runLeveler(kLeveler=0.018, bulkLevelerConcentration=0.02, cellSize=0.1e-7, rateConstant=0.00026, initialAcceleratorCoverage=0.0, levelerDiffusionCoefficient=5e-10, numberOfSteps=400, displayRate=10, displayViewers=True):

    
    kLevelerConsumption = 0.0005
    aspectRatio = 1.5
    faradaysConstant = 9.6485e4
    gasConstant = 8.314
    acceleratorDiffusionCoefficient = 4e-10
    siteDensity = 6.35e-6
    atomicVolume = 7.1e-6
    charge = 2
    metalDiffusionCoefficient = 4e-10
    temperature = 298.
    overpotential = -0.25
    bulkMetalConcentration = 250.
    bulkAcceleratorConcentration = 50.0e-3
    initialLevelerCoverage = 0.
    cflNumber = 0.2
    numberOfCellsInNarrowBand = 20
    cellsBelowTrench = 10
    trenchDepth = 0.4e-6
    trenchSpacing = 0.6e-6
    boundaryLayerDepth = 98.7e-6
    i0Suppressor = 0.3
    i0Accelerator = 22.5
    alphaSuppressor = 0.5
    alphaAccelerator = 0.4
    alphaAdsorption = 0.62
    m = 4
    b = 2.65
    A = 0.3
    Ba = -40
    Bb = 60
    Vd = 0.098
    Bd = 0.0008

    etaPrime = faradaysConstant * overpotential / gasConstant / temperature

    from fipy import TrenchMesh
    from fipy.tools import numerix
    mesh = TrenchMesh(cellSize = cellSize,
                      trenchSpacing = trenchSpacing,
                      trenchDepth = trenchDepth,
                      boundaryLayerDepth = boundaryLayerDepth,
                      aspectRatio = aspectRatio,
                      angle = numerix.pi * 4. / 180.,
                      bowWidth = 0.,
                      overBumpRadius = 0.,
                      overBumpWidth = 0.)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize
    from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
    distanceVar = DistanceVariable(
        name = 'distance variable',
        mesh = mesh,
        value = -1,
        narrowBandWidth = narrowBandWidth)

    distanceVar.setValue(1, where=mesh.getElectrolyteMask())
    
    distanceVar.calcDistanceFunction(narrowBandWidth = 1e10)
    from fipy.models.levelSet.surfactant.surfactantVariable import SurfactantVariable
    levelerVar = SurfactantVariable(
        name = "leveler variable",
        value = initialLevelerCoverage,
        distanceVar = distanceVar)

    acceleratorVar = SurfactantVariable(
        name = "accelerator variable",
        value = initialAcceleratorCoverage,
        distanceVar = distanceVar)

    from fipy.variables.cellVariable import CellVariable
    bulkAcceleratorVar = CellVariable(name = 'bulk accelerator variable',
                                      mesh = mesh,
                                      value = bulkAcceleratorConcentration)

    bulkLevelerVar = CellVariable(
        name = 'bulk leveler variable',
        mesh = mesh,
        value = bulkLevelerConcentration)

    metalVar = CellVariable(
        name = 'metal variable',
        mesh = mesh,
        value = bulkMetalConcentration)

    def depositionCoeff(alpha, i0):
        expo = numerix.exp(-alpha * etaPrime)
        return 2 * i0 * (expo - expo * numerix.exp(etaPrime))

    coeffSuppressor = depositionCoeff(alphaSuppressor, i0Suppressor)
    coeffAccelerator = depositionCoeff(alphaAccelerator, i0Accelerator)

    exchangeCurrentDensity = acceleratorVar.getInterfaceVar() * (coeffAccelerator - coeffSuppressor) + coeffSuppressor

    currentDensity = metalVar / bulkMetalConcentration * exchangeCurrentDensity

    depositionRateVariable = currentDensity * atomicVolume / charge / faradaysConstant

    extensionVelocityVariable = CellVariable(
        name = 'extension velocity',
        mesh = mesh,
        value = depositionRateVariable)   

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
             import AdsorbingSurfactantEquation

    kAccelerator = rateConstant * numerix.exp(-alphaAdsorption * etaPrime)
    kAcceleratorConsumption =  Bd + A / (numerix.exp(Ba * (overpotential + Vd)) + numerix.exp(Bb * (overpotential + Vd)))
    q = m * overpotential + b

    levelerSurfactantEquation = AdsorbingSurfactantEquation(
        levelerVar,
        distanceVar = distanceVar,
        bulkVar = bulkLevelerVar,
        rateConstant = kLeveler,
        consumptionCoeff = kLevelerConsumption * depositionRateVariable)

    accVar1 = acceleratorVar.getInterfaceVar()
    accVar2 = (accVar1 > 0) * accVar1
    accConsumptionCoeff = kAcceleratorConsumption * (accVar2**(q - 1))

    acceleratorSurfactantEquation = AdsorbingSurfactantEquation(
        acceleratorVar,
        distanceVar = distanceVar,
        bulkVar = bulkAcceleratorVar,
        rateConstant = kAccelerator,
        otherVar = levelerVar,
        otherBulkVar = bulkLevelerVar,
        otherRateConstant = kLeveler,
        consumptionCoeff = accConsumptionCoeff)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
         import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff = extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar = metalVar,
        distanceVar = distanceVar,
        depositionRate = depositionRateVariable,
        diffusionCoeff = metalDiffusionCoefficient,
        metalIonMolarVolume = atomicVolume)

    metalEquationBCs = FixedValue(mesh.getTopFaces(), bulkMetalConcentration)

    from fipy.models.levelSet.surfactant.surfactantBulkDiffusionEquation \
         import buildSurfactantBulkDiffusionEquation

    bulkAcceleratorEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar = bulkAcceleratorVar,
        distanceVar = distanceVar,
        surfactantVar = acceleratorVar,
        otherSurfactantVar = levelerVar,
        diffusionCoeff = acceleratorDiffusionCoefficient,
        rateConstant = kAccelerator * siteDensity)

    bulkAcceleratorEquationBCs = (FixedValue(
        mesh.getTopFaces(),
        bulkAcceleratorConcentration),)

    bulkLevelerEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar = bulkLevelerVar,
        distanceVar = distanceVar,
        surfactantVar = levelerVar,
        diffusionCoeff = levelerDiffusionCoefficient,
        rateConstant = kLeveler * siteDensity)

    bulkLevelerEquationBCs =  (FixedValue(
        mesh.getTopFaces(),
        bulkLevelerConcentration),)

    eqnTuple = ( (advectionEquation, distanceVar, ()),
                 (levelerSurfactantEquation, levelerVar, ()),
                 (acceleratorSurfactantEquation, acceleratorVar, ()),
                 (metalEquation, metalVar,  metalEquationBCs),
                 (bulkAcceleratorEquation, bulkAcceleratorVar, bulkAcceleratorEquationBCs),
                 (bulkLevelerEquation, bulkLevelerVar, bulkLevelerEquationBCs))

    levelSetUpdateFrequency = int(0.7 * narrowBandWidth / cellSize / cflNumber / 2)

    totalTime = 0.0

    if displayViewers:
        from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
        viewers = (
            MayaviSurfactantViewer(distanceVar, acceleratorVar.getInterfaceVar(), zoomFactor = 1e6, limits = { 'datamax' : 0.5, 'datamin' : 0.0 }, smooth = 1, title = 'accelerator coverage'),
            MayaviSurfactantViewer(distanceVar, levelerVar.getInterfaceVar(), zoomFactor = 1e6, limits = { 'datamax' : 0.5, 'datamin' : 0.0 }, smooth = 1, title = 'leveler coverage'))
        
    for step in range(numberOfSteps):

        if displayViewers:
            if step % displayRate == 0:
                for viewer in viewers:
                    viewer.plot()
            
        if step % levelSetUpdateFrequency == 0:
            distanceVar.calcDistanceFunction(deleteIslands = True)

        extensionVelocityVariable.setValue(depositionRateVariable)

        extOnInt = numerix.where(distanceVar > 0,
                                 numerix.where(distanceVar < 2 * cellSize,
                                               extensionVelocityVariable,
                                               0),
                                 0)

        dt = cflNumber * cellSize / numerix.max(extOnInt)

        id = numerix.max(numerix.nonzero(distanceVar._getInterfaceFlag()))
        distanceVar.extendVariable(extensionVelocityVariable, deleteIslands = True)

        extensionVelocityVariable[mesh.getFineMesh().getNumberOfCells():] = 0.

        for eqn, var, BCs in eqnTuple:
            var.updateOld()

        for eqn, var, BCs in eqnTuple:
            eqn.solve(var, boundaryConditions = BCs, dt = dt)
            
        totalTime += dt

    try:
        testFile = 'testLeveler.gz'
        import os
        import examples.levelSet.electroChem
        from fipy.tools import dump
        data = dump.read(os.path.join(examples.levelSet.electroChem.__path__[0], testFile))
        N = mesh.getFineMesh().getNumberOfCells()
        print numerix.allclose(data[:N], levelerVar[:N], rtol = 1e-3)
    except:
        return 0
예제 #9
0
    xCells = int(trenchSpacing / 2 / cellSize)
    from fipy.meshes.grid2D import Grid2D
    mesh = Grid2D(dx=cellSize, dy=cellSize, nx=xCells, ny=yCells)

    bench.stop('mesh')

    bench.start()

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize
    from fipy.models.levelSet.distanceFunction.distanceVariable import \
        DistanceVariable

    distanceVar = DistanceVariable(name='distance variable',
                                   mesh=mesh,
                                   value=-1,
                                   narrowBandWidth=narrowBandWidth,
                                   hasOld=1)

    bottomHeight = cellsBelowTrench * cellSize
    trenchHeight = bottomHeight + trenchDepth
    trenchWidth = trenchDepth / aspectRatio
    sideWidth = (trenchSpacing - trenchWidth) / 2
    x, y = mesh.getCellCenters()[..., 0], mesh.getCellCenters()[..., 1]
    distanceVar.setValue(1,
                         where=(y > trenchHeight)
                         | ((y > bottomHeight)
                            & (x < xCells * cellSize - sideWidth)))

    distanceVar.calcDistanceFunction(narrowBandWidth=1e10)
    from fipy.models.levelSet.surfactant.surfactantVariable import \
예제 #10
0
파일: inputGold.py 프로젝트: ghorn/Eg
def runGold(faradaysConstant=9.6e4,
            consumptionRateConstant=2.6e+6,
            molarVolume=10.21e-6,
            charge=1.0,
            metalDiffusion=1.7e-9,
            metalConcentration=20.0,
            catalystCoverage=0.15,
            currentDensity0=3e-2 * 16,
            currentDensity1=6.5e-1 * 16,
            cellSize=0.1e-7,
            trenchDepth=0.2e-6,
            aspectRatio=1.47,
            trenchSpacing=0.5e-6,
            boundaryLayerDepth=90.0e-6,
            numberOfSteps=10,
            taperAngle=6.0,
            displayViewers=True):
    
    cflNumber = 0.2
    numberOfCellsInNarrowBand = 20
    cellsBelowTrench = 10
    
    from fipy.tools import numerix
    from fipy import TrenchMesh
    mesh = TrenchMesh(cellSize = cellSize,
                      trenchSpacing = trenchSpacing,
                      trenchDepth = trenchDepth,
                      boundaryLayerDepth = boundaryLayerDepth,
                      aspectRatio = aspectRatio,
                      angle = numerix.pi * taperAngle / 180.,
                      bowWidth = 0.,
                      overBumpRadius = 0.,
                      overBumpWidth = 0.)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize

    from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable        
    distanceVar = DistanceVariable(
       name = 'distance variable',
       mesh = mesh,
       value = -1,
       narrowBandWidth = narrowBandWidth)

    distanceVar.setValue(1, where=mesh.getElectrolyteMask())
    distanceVar.calcDistanceFunction(narrowBandWidth = 1e10)

    from fipy.models.levelSet.surfactant.surfactantVariable import SurfactantVariable
    catalystVar = SurfactantVariable(
        name = "catalyst variable",
        value = catalystCoverage,
        distanceVar = distanceVar)

    from fipy.variables.cellVariable import CellVariable
    metalVar = CellVariable(
        name = 'metal variable',
        mesh = mesh,
        value = metalConcentration)

    exchangeCurrentDensity = currentDensity0 + currentDensity1 * catalystVar.getInterfaceVar()
    
    currentDensity = metalVar / metalConcentration * exchangeCurrentDensity

    depositionRateVariable = currentDensity * molarVolume / charge / faradaysConstant

    extensionVelocityVariable = CellVariable(
        name = 'extension velocity',
        mesh = mesh,
        value = depositionRateVariable)   

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
                import AdsorbingSurfactantEquation

    catalystSurfactantEquation = AdsorbingSurfactantEquation(
        catalystVar,
        distanceVar = distanceVar,
        bulkVar = 0,
        rateConstant = 0,
        consumptionCoeff = consumptionRateConstant * extensionVelocityVariable)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
                   import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff = extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
                         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar = metalVar,
        distanceVar = distanceVar,
        depositionRate = depositionRateVariable,
        diffusionCoeff = metalDiffusion,
        metalIonMolarVolume = molarVolume)

    metalEquationBCs = FixedValue(mesh.getTopFaces(), metalConcentration)

    if displayViewers:

        try:
            
            from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
            viewers = (
                MayaviSurfactantViewer(distanceVar, catalystVar.getInterfaceVar(), zoomFactor = 1e6, limits = { 'datamax' : 1.0, 'datamin' : 0.0 }, smooth = 1, title = 'catalyst coverage'),)
            
        except:
            
            class PlotVariable(CellVariable):
                def __init__(self, var = None, name = ''):
                    CellVariable.__init__(self, mesh = mesh.getFineMesh(), name = name)
                    self.var = self._requires(var)

                def _calcValue(self):
                    return numerix.array(self.var[:self.mesh.getNumberOfCells()])

            from fipy.viewers import make
            viewers = (
                make(PlotVariable(var = distanceVar), limits = {'datamax' : 1e-9, 'datamin' : -1e-9}),
                make(PlotVariable(var = catalystVar.getInterfaceVar())))

    else:
        viewers = ()
    levelSetUpdateFrequency = int(0.7 * narrowBandWidth / cellSize / cflNumber / 2)
    step = 0
    
    while step < numberOfSteps:

        if step % 10 == 0:
            for viewer in viewers:
                viewer.plot()

        if step % levelSetUpdateFrequency == 0:
            
            distanceVar.calcDistanceFunction(deleteIslands = True)
            
        extensionVelocityVariable.setValue(numerix.array(depositionRateVariable))
        argmax = numerix.argmax(extensionVelocityVariable)
        dt = cflNumber * cellSize / extensionVelocityVariable[argmax]
        distanceVar.extendVariable(extensionVelocityVariable, deleteIslands = True)
        
        distanceVar.updateOld()
        catalystVar.updateOld()
        metalVar.updateOld()

        advectionEquation.solve(distanceVar, dt = dt)
        catalystSurfactantEquation.solve(catalystVar, dt = dt)
        metalEquation.solve(metalVar, boundaryConditions = metalEquationBCs, dt = dt)

        step += 1

    try:
        from fipy.tools import dump
        import os
        import examples.levelSet.electroChem
        data = dump.read(os.path.join(examples.levelSet.electroChem.__path__[0], 'goldData.gz'))
        n = mesh.getFineMesh().getNumberOfCells()
        print numerix.allclose(catalystVar[:n], data[:n], atol=1.0)
    except:
        return 0
예제 #11
0
Ly = ny * dy

mesh = Grid2D(dx=dx, dy=dy, nx=nx, ny=ny)

initialArray = -numerix.ones(nx * ny, 'd')

positiveCells = mesh.getCells(
    filter=lambda cell: (cell.getCenter()[0] < dx) or (cell.getCenter()[0] >
                                                       (Lx - dx)) or
    (cell.getCenter()[1] < dy) or (cell.getCenter()[1] > (Ly - dy)))

for cell in positiveCells:
    initialArray[cell.getID()] = 1.

var = DistanceVariable(name='level set variable',
                       mesh=mesh,
                       value=initialArray,
                       hasOld=1)

var.calcDistanceFunction()

if __name__ == '__main__':
    import fipy.viewers
    viewer = fipy.viewers.make(vars=var,
                               limits={
                                   'datamin': -5.,
                                   'datamax': 5.
                               })
    viewer.plot()
    raw_input('finished')
예제 #12
0
파일: inputCircle.py 프로젝트: ghorn/Eg
nx = 50
velocity = 1.
cfl = 0.1
velocity = 1.
distanceToTravel = L / 10.
initialRadius = L / 4.

dx = L / nx
timeStepDuration = cfl * dx / velocity
steps = int(distanceToTravel / dx / cfl)

mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = nx)

distanceVariable = DistanceVariable(
    name = 'level set variable',
    mesh = mesh,
    value = 1.,
    hasOld = 1
    )

cellRadius = numerix.sqrt((mesh.getCellCenters()[:,0] - L / 2.)**2 + (mesh.getCellCenters()[:,1] - L / 2.)**2)
distanceVariable.setValue(cellRadius - initialRadius)

initialSurfactantValue =  1.

surfactantVariable = SurfactantVariable(
    value = initialSurfactantValue,
    distanceVar = distanceVariable
    )

advectionEquation = buildHigherOrderAdvectionEquation(
    advectionCoeff = velocity)
예제 #13
0
파일: superfill.py 프로젝트: ghorn/Eg
    mesh = Grid2D(dx = cellSize,
                  dy = cellSize,
                  nx = xCells,
                  ny = yCells)

    bench.stop('mesh')

    bench.start()

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize
    from fipy.models.levelSet.distanceFunction.distanceVariable import \
        DistanceVariable        

    distanceVar = DistanceVariable(
       name = 'distance variable',
       mesh = mesh,
       value = -1,
       narrowBandWidth = narrowBandWidth,
       hasOld = 1)

    bottomHeight = cellsBelowTrench * cellSize
    trenchHeight = bottomHeight + trenchDepth
    trenchWidth = trenchDepth / aspectRatio
    sideWidth = (trenchSpacing - trenchWidth) / 2
    x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
    distanceVar.setValue(1, where=(y > trenchHeight) 
                                  | ((y > bottomHeight) 
                                     & (x < xCells * cellSize - sideWidth)))

    distanceVar.calcDistanceFunction(narrowBandWidth = 1e10)
    from fipy.models.levelSet.surfactant.surfactantVariable import \
        SurfactantVariable
예제 #14
0
cinf = 1.
nx = 100
totalTimeSteps = 100
dt = 0.001

## build the mesh

from fipy.meshes.grid1D import Grid1D
dx = L / (nx - 1.5)
mesh = Grid1D(nx=nx, dx=dx)

## build the distance variable

value = mesh.getCellCenters()[:, 0] - 1.499 * dx
##distanceVar = DistanceVariable(mesh = mesh, value = dx * (numerix.arange(nx) - 0.999))
distanceVar = DistanceVariable(mesh=mesh, value=value, hasOld=1)

## Build the bulk diffusion equation

bulkVar = CellVariable(mesh=mesh, value=cinf)

surfactantVar = SurfactantVariable(distanceVar=distanceVar)

bulkEqn = buildSurfactantBulkDiffusionEquation(bulkVar,
                                               distanceVar=distanceVar,
                                               surfactantVar=surfactantVar,
                                               diffusionCoeff=diffusion,
                                               rateConstant=rateConstant *
                                               siteDensity)

bcs = (FixedValue(mesh.getFacesRight(), cinf), )
예제 #15
0
파일: inputGold.py 프로젝트: ghorn/Eg
def runGold(faradaysConstant=9.6e4,
            consumptionRateConstant=2.6e+6,
            molarVolume=10.21e-6,
            charge=1.0,
            metalDiffusion=1.7e-9,
            metalConcentration=20.0,
            catalystCoverage=0.15,
            currentDensity0=3e-2 * 16,
            currentDensity1=6.5e-1 * 16,
            cellSize=0.1e-7,
            trenchDepth=0.2e-6,
            aspectRatio=1.47,
            trenchSpacing=0.5e-6,
            boundaryLayerDepth=90.0e-6,
            numberOfSteps=10,
            taperAngle=6.0,
            displayViewers=True):

    cflNumber = 0.2
    numberOfCellsInNarrowBand = 20
    cellsBelowTrench = 10

    from fipy.tools import numerix
    from fipy import TrenchMesh
    mesh = TrenchMesh(cellSize=cellSize,
                      trenchSpacing=trenchSpacing,
                      trenchDepth=trenchDepth,
                      boundaryLayerDepth=boundaryLayerDepth,
                      aspectRatio=aspectRatio,
                      angle=numerix.pi * taperAngle / 180.,
                      bowWidth=0.,
                      overBumpRadius=0.,
                      overBumpWidth=0.)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize

    from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
    distanceVar = DistanceVariable(name='distance variable',
                                   mesh=mesh,
                                   value=-1,
                                   narrowBandWidth=narrowBandWidth)

    distanceVar.setValue(1, where=mesh.getElectrolyteMask())
    distanceVar.calcDistanceFunction(narrowBandWidth=1e10)

    from fipy.models.levelSet.surfactant.surfactantVariable import SurfactantVariable
    catalystVar = SurfactantVariable(name="catalyst variable",
                                     value=catalystCoverage,
                                     distanceVar=distanceVar)

    from fipy.variables.cellVariable import CellVariable
    metalVar = CellVariable(name='metal variable',
                            mesh=mesh,
                            value=metalConcentration)

    exchangeCurrentDensity = currentDensity0 + currentDensity1 * catalystVar.getInterfaceVar(
    )

    currentDensity = metalVar / metalConcentration * exchangeCurrentDensity

    depositionRateVariable = currentDensity * molarVolume / charge / faradaysConstant

    extensionVelocityVariable = CellVariable(name='extension velocity',
                                             mesh=mesh,
                                             value=depositionRateVariable)

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
                import AdsorbingSurfactantEquation

    catalystSurfactantEquation = AdsorbingSurfactantEquation(
        catalystVar,
        distanceVar=distanceVar,
        bulkVar=0,
        rateConstant=0,
        consumptionCoeff=consumptionRateConstant * extensionVelocityVariable)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
                   import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff=extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
                         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar=metalVar,
        distanceVar=distanceVar,
        depositionRate=depositionRateVariable,
        diffusionCoeff=metalDiffusion,
        metalIonMolarVolume=molarVolume)

    metalEquationBCs = FixedValue(mesh.getTopFaces(), metalConcentration)

    if displayViewers:

        try:

            from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
            viewers = (MayaviSurfactantViewer(distanceVar,
                                              catalystVar.getInterfaceVar(),
                                              zoomFactor=1e6,
                                              limits={
                                                  'datamax': 1.0,
                                                  'datamin': 0.0
                                              },
                                              smooth=1,
                                              title='catalyst coverage'), )

        except:

            class PlotVariable(CellVariable):
                def __init__(self, var=None, name=''):
                    CellVariable.__init__(self,
                                          mesh=mesh.getFineMesh(),
                                          name=name)
                    self.var = self._requires(var)

                def _calcValue(self):
                    return numerix.array(
                        self.var[:self.mesh.getNumberOfCells()])

            from fipy.viewers import make
            viewers = (make(PlotVariable(var=distanceVar),
                            limits={
                                'datamax': 1e-9,
                                'datamin': -1e-9
                            }),
                       make(PlotVariable(var=catalystVar.getInterfaceVar())))

    else:
        viewers = ()
    levelSetUpdateFrequency = int(0.7 * narrowBandWidth / cellSize /
                                  cflNumber / 2)
    step = 0

    while step < numberOfSteps:

        if step % 10 == 0:
            for viewer in viewers:
                viewer.plot()

        if step % levelSetUpdateFrequency == 0:

            distanceVar.calcDistanceFunction(deleteIslands=True)

        extensionVelocityVariable.setValue(
            numerix.array(depositionRateVariable))
        argmax = numerix.argmax(extensionVelocityVariable)
        dt = cflNumber * cellSize / extensionVelocityVariable[argmax]
        distanceVar.extendVariable(extensionVelocityVariable,
                                   deleteIslands=True)

        distanceVar.updateOld()
        catalystVar.updateOld()
        metalVar.updateOld()

        advectionEquation.solve(distanceVar, dt=dt)
        catalystSurfactantEquation.solve(catalystVar, dt=dt)
        metalEquation.solve(metalVar,
                            boundaryConditions=metalEquationBCs,
                            dt=dt)

        step += 1

    try:
        from fipy.tools import dump
        import os
        import examples.levelSet.electroChem
        data = dump.read(
            os.path.join(examples.levelSet.electroChem.__path__[0],
                         'goldData.gz'))
        n = mesh.getFineMesh().getNumberOfCells()
        print numerix.allclose(catalystVar[:n], data[:n], atol=1.0)
    except:
        return 0
예제 #16
0
def runSimpleTrenchSystem(faradaysConstant=9.6e4,
                          gasConstant=8.314,
                          transferCoefficient=0.5,
                          rateConstant0=1.76,
                          rateConstant3=-245e-6,
                          catalystDiffusion=1e-9,
                          siteDensity=9.8e-6,
                          molarVolume=7.1e-6,
                          charge=2,
                          metalDiffusion=5.6e-10,
                          temperature=298.,
                          overpotential=-0.3,
                          metalConcentration=250.,
                          catalystConcentration=5e-3,
                          catalystCoverage=0.,
                          currentDensity0=0.26,
                          currentDensity1=45.,
                          cellSize=0.1e-7,
                          trenchDepth=0.5e-6,
                          aspectRatio=2.,
                          trenchSpacing=0.6e-6,
                          boundaryLayerDepth=0.3e-6,
                          numberOfSteps=5,
                          displayViewers=True):

    cflNumber = 0.2
    numberOfCellsInNarrowBand = 10
    cellsBelowTrench = 10

    yCells = cellsBelowTrench \
             + int((trenchDepth + boundaryLayerDepth) / cellSize)

    xCells = int(trenchSpacing / 2 / cellSize)

    from fipy.meshes.grid2D import Grid2D
    mesh = Grid2D(dx=cellSize, dy=cellSize, nx=xCells, ny=yCells)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize
    from fipy.models.levelSet.distanceFunction.distanceVariable import \
         DistanceVariable

    distanceVar = DistanceVariable(name='distance variable',
                                   mesh=mesh,
                                   value=-1,
                                   narrowBandWidth=narrowBandWidth,
                                   hasOld=1)

    bottomHeight = cellsBelowTrench * cellSize
    trenchHeight = bottomHeight + trenchDepth
    trenchWidth = trenchDepth / aspectRatio
    sideWidth = (trenchSpacing - trenchWidth) / 2

    x, y = mesh.getCellCenters()[..., 0], mesh.getCellCenters()[..., 1]
    distanceVar.setValue(1,
                         where=(y > trenchHeight) |
                         ((y > bottomHeight) &
                          (x < xCells * cellSize - sideWidth)))

    distanceVar.calcDistanceFunction(narrowBandWidth=1e10)

    from fipy.models.levelSet.surfactant.surfactantVariable import \
         SurfactantVariable

    catalystVar = SurfactantVariable(name="catalyst variable",
                                     value=catalystCoverage,
                                     distanceVar=distanceVar)

    from fipy.variables.cellVariable import CellVariable

    bulkCatalystVar = CellVariable(name='bulk catalyst variable',
                                   mesh=mesh,
                                   value=catalystConcentration)

    metalVar = CellVariable(name='metal variable',
                            mesh=mesh,
                            value=metalConcentration)

    expoConstant = -transferCoefficient * faradaysConstant \
                   / (gasConstant * temperature)

    tmp = currentDensity1 * catalystVar.getInterfaceVar()

    exchangeCurrentDensity = currentDensity0 + tmp

    import fipy.tools.numerix as numerix
    expo = numerix.exp(expoConstant * overpotential)
    currentDensity = expo * exchangeCurrentDensity * metalVar \
                     / metalConcentration

    depositionRateVariable = currentDensity * molarVolume \
                             / (charge * faradaysConstant)

    extensionVelocityVariable = CellVariable(name='extension velocity',
                                             mesh=mesh,
                                             value=depositionRateVariable)

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
                import AdsorbingSurfactantEquation

    surfactantEquation = AdsorbingSurfactantEquation(
        surfactantVar=catalystVar,
        distanceVar=distanceVar,
        bulkVar=bulkCatalystVar,
        rateConstant=rateConstant0 + rateConstant3 * overpotential**3)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
                   import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff=extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
                         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar=metalVar,
        distanceVar=distanceVar,
        depositionRate=depositionRateVariable,
        diffusionCoeff=metalDiffusion,
        metalIonMolarVolume=molarVolume,
    )

    metalEquationBCs = FixedValue(mesh.getFacesTop(), metalConcentration)

    from fipy.models.levelSet.surfactant.surfactantBulkDiffusionEquation \
                    import buildSurfactantBulkDiffusionEquation

    bulkCatalystEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar=bulkCatalystVar,
        distanceVar=distanceVar,
        surfactantVar=catalystVar,
        diffusionCoeff=catalystDiffusion,
        rateConstant=rateConstant0 * siteDensity)

    catalystBCs = FixedValue(mesh.getFacesTop(), catalystConcentration)

    if displayViewers:
        try:
            from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
            viewers = (MayaviSurfactantViewer(distanceVar,
                                              catalystVar.getInterfaceVar(),
                                              zoomFactor=1e6,
                                              limits={
                                                  'datamax': 0.5,
                                                  'datamin': 0.0
                                              },
                                              smooth=1,
                                              title='catalyst coverage'), )
        except:
            from fipy.viewers import make
            viewers = (make(distanceVar,
                            limits={
                                'datamin': -1e-9,
                                'datamax': 1e-9
                            }), make(catalystVar.getInterfaceVar()))
    else:
        viewers = ()

    levelSetUpdateFrequency = int(0.8 * narrowBandWidth \
                                  / (cellSize * cflNumber * 2))

    for step in range(numberOfSteps):

        if step % 5 == 0:
            for viewer in viewers:
                viewer.plot()

        if step % levelSetUpdateFrequency == 0:
            distanceVar.calcDistanceFunction()

        extensionVelocityVariable.setValue(depositionRateVariable())

        distanceVar.updateOld()
        catalystVar.updateOld()
        metalVar.updateOld()
        bulkCatalystVar.updateOld()

        distanceVar.extendVariable(extensionVelocityVariable)
        dt = cflNumber * cellSize / numerix.max(extensionVelocityVariable)

        advectionEquation.solve(distanceVar, dt=dt)
        surfactantEquation.solve(catalystVar, dt=dt)
        metalEquation.solve(metalVar,
                            dt=dt,
                            boundaryConditions=metalEquationBCs)
        bulkCatalystEquation.solve(bulkCatalystVar,
                                   dt=dt,
                                   boundaryConditions=catalystBCs)

    try:
        import os
        import examples.levelSet.electroChem
        filepath = os.path.join(examples.levelSet.electroChem.__path__[0],
                                'test.gz')

        from fipy.tools import dump
        from fipy.tools import numerix
        print catalystVar.allclose(numerix.array(dump.read(filepath)),
                                   rtol=1e-4)
    except:
        return 0
예제 #17
0
파일: inputLeveler.py 프로젝트: ghorn/Eg
def runLeveler(kLeveler=0.018,
               bulkLevelerConcentration=0.02,
               cellSize=0.1e-7,
               rateConstant=0.00026,
               initialAcceleratorCoverage=0.0,
               levelerDiffusionCoefficient=5e-10,
               numberOfSteps=400,
               displayRate=10,
               displayViewers=True):

    kLevelerConsumption = 0.0005
    aspectRatio = 1.5
    faradaysConstant = 9.6485e4
    gasConstant = 8.314
    acceleratorDiffusionCoefficient = 4e-10
    siteDensity = 6.35e-6
    atomicVolume = 7.1e-6
    charge = 2
    metalDiffusionCoefficient = 4e-10
    temperature = 298.
    overpotential = -0.25
    bulkMetalConcentration = 250.
    bulkAcceleratorConcentration = 50.0e-3
    initialLevelerCoverage = 0.
    cflNumber = 0.2
    numberOfCellsInNarrowBand = 20
    cellsBelowTrench = 10
    trenchDepth = 0.4e-6
    trenchSpacing = 0.6e-6
    boundaryLayerDepth = 98.7e-6
    i0Suppressor = 0.3
    i0Accelerator = 22.5
    alphaSuppressor = 0.5
    alphaAccelerator = 0.4
    alphaAdsorption = 0.62
    m = 4
    b = 2.65
    A = 0.3
    Ba = -40
    Bb = 60
    Vd = 0.098
    Bd = 0.0008

    etaPrime = faradaysConstant * overpotential / gasConstant / temperature

    from fipy import TrenchMesh
    from fipy.tools import numerix
    mesh = TrenchMesh(cellSize=cellSize,
                      trenchSpacing=trenchSpacing,
                      trenchDepth=trenchDepth,
                      boundaryLayerDepth=boundaryLayerDepth,
                      aspectRatio=aspectRatio,
                      angle=numerix.pi * 4. / 180.,
                      bowWidth=0.,
                      overBumpRadius=0.,
                      overBumpWidth=0.)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize
    from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
    distanceVar = DistanceVariable(name='distance variable',
                                   mesh=mesh,
                                   value=-1,
                                   narrowBandWidth=narrowBandWidth)

    distanceVar.setValue(1, where=mesh.getElectrolyteMask())

    distanceVar.calcDistanceFunction(narrowBandWidth=1e10)
    from fipy.models.levelSet.surfactant.surfactantVariable import SurfactantVariable
    levelerVar = SurfactantVariable(name="leveler variable",
                                    value=initialLevelerCoverage,
                                    distanceVar=distanceVar)

    acceleratorVar = SurfactantVariable(name="accelerator variable",
                                        value=initialAcceleratorCoverage,
                                        distanceVar=distanceVar)

    from fipy.variables.cellVariable import CellVariable
    bulkAcceleratorVar = CellVariable(name='bulk accelerator variable',
                                      mesh=mesh,
                                      value=bulkAcceleratorConcentration)

    bulkLevelerVar = CellVariable(name='bulk leveler variable',
                                  mesh=mesh,
                                  value=bulkLevelerConcentration)

    metalVar = CellVariable(name='metal variable',
                            mesh=mesh,
                            value=bulkMetalConcentration)

    def depositionCoeff(alpha, i0):
        expo = numerix.exp(-alpha * etaPrime)
        return 2 * i0 * (expo - expo * numerix.exp(etaPrime))

    coeffSuppressor = depositionCoeff(alphaSuppressor, i0Suppressor)
    coeffAccelerator = depositionCoeff(alphaAccelerator, i0Accelerator)

    exchangeCurrentDensity = acceleratorVar.getInterfaceVar() * (
        coeffAccelerator - coeffSuppressor) + coeffSuppressor

    currentDensity = metalVar / bulkMetalConcentration * exchangeCurrentDensity

    depositionRateVariable = currentDensity * atomicVolume / charge / faradaysConstant

    extensionVelocityVariable = CellVariable(name='extension velocity',
                                             mesh=mesh,
                                             value=depositionRateVariable)

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
             import AdsorbingSurfactantEquation

    kAccelerator = rateConstant * numerix.exp(-alphaAdsorption * etaPrime)
    kAcceleratorConsumption = Bd + A / (numerix.exp(Ba *
                                                    (overpotential + Vd)) +
                                        numerix.exp(Bb * (overpotential + Vd)))
    q = m * overpotential + b

    levelerSurfactantEquation = AdsorbingSurfactantEquation(
        levelerVar,
        distanceVar=distanceVar,
        bulkVar=bulkLevelerVar,
        rateConstant=kLeveler,
        consumptionCoeff=kLevelerConsumption * depositionRateVariable)

    accVar1 = acceleratorVar.getInterfaceVar()
    accVar2 = (accVar1 > 0) * accVar1
    accConsumptionCoeff = kAcceleratorConsumption * (accVar2**(q - 1))

    acceleratorSurfactantEquation = AdsorbingSurfactantEquation(
        acceleratorVar,
        distanceVar=distanceVar,
        bulkVar=bulkAcceleratorVar,
        rateConstant=kAccelerator,
        otherVar=levelerVar,
        otherBulkVar=bulkLevelerVar,
        otherRateConstant=kLeveler,
        consumptionCoeff=accConsumptionCoeff)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
         import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff=extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar=metalVar,
        distanceVar=distanceVar,
        depositionRate=depositionRateVariable,
        diffusionCoeff=metalDiffusionCoefficient,
        metalIonMolarVolume=atomicVolume)

    metalEquationBCs = FixedValue(mesh.getTopFaces(), bulkMetalConcentration)

    from fipy.models.levelSet.surfactant.surfactantBulkDiffusionEquation \
         import buildSurfactantBulkDiffusionEquation

    bulkAcceleratorEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar=bulkAcceleratorVar,
        distanceVar=distanceVar,
        surfactantVar=acceleratorVar,
        otherSurfactantVar=levelerVar,
        diffusionCoeff=acceleratorDiffusionCoefficient,
        rateConstant=kAccelerator * siteDensity)

    bulkAcceleratorEquationBCs = (FixedValue(mesh.getTopFaces(),
                                             bulkAcceleratorConcentration), )

    bulkLevelerEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar=bulkLevelerVar,
        distanceVar=distanceVar,
        surfactantVar=levelerVar,
        diffusionCoeff=levelerDiffusionCoefficient,
        rateConstant=kLeveler * siteDensity)

    bulkLevelerEquationBCs = (FixedValue(mesh.getTopFaces(),
                                         bulkLevelerConcentration), )

    eqnTuple = ((advectionEquation, distanceVar,
                 ()), (levelerSurfactantEquation, levelerVar,
                       ()), (acceleratorSurfactantEquation, acceleratorVar,
                             ()), (metalEquation, metalVar, metalEquationBCs),
                (bulkAcceleratorEquation, bulkAcceleratorVar,
                 bulkAcceleratorEquationBCs),
                (bulkLevelerEquation, bulkLevelerVar, bulkLevelerEquationBCs))

    levelSetUpdateFrequency = int(0.7 * narrowBandWidth / cellSize /
                                  cflNumber / 2)

    totalTime = 0.0

    if displayViewers:
        from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
        viewers = (MayaviSurfactantViewer(distanceVar,
                                          acceleratorVar.getInterfaceVar(),
                                          zoomFactor=1e6,
                                          limits={
                                              'datamax': 0.5,
                                              'datamin': 0.0
                                          },
                                          smooth=1,
                                          title='accelerator coverage'),
                   MayaviSurfactantViewer(distanceVar,
                                          levelerVar.getInterfaceVar(),
                                          zoomFactor=1e6,
                                          limits={
                                              'datamax': 0.5,
                                              'datamin': 0.0
                                          },
                                          smooth=1,
                                          title='leveler coverage'))

    for step in range(numberOfSteps):

        if displayViewers:
            if step % displayRate == 0:
                for viewer in viewers:
                    viewer.plot()

        if step % levelSetUpdateFrequency == 0:
            distanceVar.calcDistanceFunction(deleteIslands=True)

        extensionVelocityVariable.setValue(depositionRateVariable)

        extOnInt = numerix.where(
            distanceVar > 0,
            numerix.where(distanceVar < 2 * cellSize,
                          extensionVelocityVariable, 0), 0)

        dt = cflNumber * cellSize / numerix.max(extOnInt)

        id = numerix.max(numerix.nonzero(distanceVar._getInterfaceFlag()))
        distanceVar.extendVariable(extensionVelocityVariable,
                                   deleteIslands=True)

        extensionVelocityVariable[mesh.getFineMesh().getNumberOfCells():] = 0.

        for eqn, var, BCs in eqnTuple:
            var.updateOld()

        for eqn, var, BCs in eqnTuple:
            eqn.solve(var, boundaryConditions=BCs, dt=dt)

        totalTime += dt

    try:
        testFile = 'testLeveler.gz'
        import os
        import examples.levelSet.electroChem
        from fipy.tools import dump
        data = dump.read(
            os.path.join(examples.levelSet.electroChem.__path__[0], testFile))
        N = mesh.getFineMesh().getNumberOfCells()
        print numerix.allclose(data[:N], levelerVar[:N], rtol=1e-3)
    except:
        return 0
예제 #18
0
def runSimpleTrenchSystem(faradaysConstant=9.6e4,
                          gasConstant=8.314,
                          transferCoefficient=0.5,
                          rateConstant0=1.76,
                          rateConstant3=-245e-6,
                          catalystDiffusion=1e-9,
                          siteDensity=9.8e-6,
                          molarVolume=7.1e-6,
                          charge=2,
                          metalDiffusion=5.6e-10,
                          temperature=298.,
                          overpotential=-0.3,
                          metalConcentration=250.,
                          catalystConcentration=5e-3,
                          catalystCoverage=0.,
                          currentDensity0=0.26,
                          currentDensity1=45.,
                          cellSize=0.1e-7,
                          trenchDepth=0.5e-6,
                          aspectRatio=2.,
                          trenchSpacing=0.6e-6,
                          boundaryLayerDepth=0.3e-6,
                          numberOfSteps=5,
                          displayViewers=True):

    cflNumber = 0.2
    numberOfCellsInNarrowBand = 10
    cellsBelowTrench = 10
    
    yCells = cellsBelowTrench \
             + int((trenchDepth + boundaryLayerDepth) / cellSize)

    xCells = int(trenchSpacing / 2 / cellSize)

    from fipy.meshes.grid2D import Grid2D
    mesh = Grid2D(dx = cellSize,
                  dy = cellSize,
                  nx = xCells,
                  ny = yCells)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize
    from fipy.models.levelSet.distanceFunction.distanceVariable import \
         DistanceVariable        

    distanceVar = DistanceVariable(
        name = 'distance variable',
        mesh = mesh,
        value = -1,
        narrowBandWidth = narrowBandWidth,
        hasOld = 1)

    bottomHeight = cellsBelowTrench * cellSize
    trenchHeight = bottomHeight + trenchDepth
    trenchWidth = trenchDepth / aspectRatio
    sideWidth = (trenchSpacing - trenchWidth) / 2

    x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
    distanceVar.setValue(1, where=(y > trenchHeight) | ((y > bottomHeight) & (x < xCells * cellSize - sideWidth)))

    distanceVar.calcDistanceFunction(narrowBandWidth = 1e10)

    from fipy.models.levelSet.surfactant.surfactantVariable import \
         SurfactantVariable
    
    catalystVar = SurfactantVariable(
        name = "catalyst variable",
        value = catalystCoverage,
        distanceVar = distanceVar)
    
    from fipy.variables.cellVariable import CellVariable

    bulkCatalystVar = CellVariable(
        name = 'bulk catalyst variable',
        mesh = mesh,
        value = catalystConcentration)

    metalVar = CellVariable(
        name = 'metal variable',
        mesh = mesh,
        value = metalConcentration)
    
    expoConstant = -transferCoefficient * faradaysConstant \
                   / (gasConstant * temperature)
    
    tmp = currentDensity1 * catalystVar.getInterfaceVar()

    exchangeCurrentDensity = currentDensity0 + tmp

    import fipy.tools.numerix as numerix
    expo = numerix.exp(expoConstant * overpotential)
    currentDensity = expo * exchangeCurrentDensity * metalVar \
                     / metalConcentration

    depositionRateVariable = currentDensity * molarVolume \
                             / (charge * faradaysConstant)

    extensionVelocityVariable = CellVariable(
        name = 'extension velocity',
        mesh = mesh,
        value = depositionRateVariable)   

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
                import AdsorbingSurfactantEquation

    surfactantEquation = AdsorbingSurfactantEquation(
        surfactantVar = catalystVar,
        distanceVar = distanceVar,
        bulkVar = bulkCatalystVar,
        rateConstant = rateConstant0 + rateConstant3 * overpotential**3)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
                   import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff = extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
                         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar = metalVar,
        distanceVar = distanceVar,
        depositionRate = depositionRateVariable,
        diffusionCoeff = metalDiffusion,
        metalIonMolarVolume = molarVolume,
    )

    metalEquationBCs = FixedValue(mesh.getFacesTop(), metalConcentration)

    from fipy.models.levelSet.surfactant.surfactantBulkDiffusionEquation \
                    import buildSurfactantBulkDiffusionEquation

    bulkCatalystEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar = bulkCatalystVar,
        distanceVar = distanceVar,
        surfactantVar = catalystVar,
        diffusionCoeff = catalystDiffusion,
        rateConstant = rateConstant0 * siteDensity
    )

    catalystBCs = FixedValue(mesh.getFacesTop(), catalystConcentration)

    if displayViewers:
        try:
            from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
            viewers = (MayaviSurfactantViewer(distanceVar, catalystVar.getInterfaceVar(), zoomFactor = 1e6, limits = { 'datamax' : 0.5, 'datamin' : 0.0 }, smooth = 1, title = 'catalyst coverage'),)
        except:
            from fipy.viewers import make
            viewers = (
                make(distanceVar, limits = { 'datamin' :-1e-9 , 'datamax' : 1e-9 }),
                make(catalystVar.getInterfaceVar()))
    else:
        viewers = ()

    levelSetUpdateFrequency = int(0.8 * narrowBandWidth \
                                  / (cellSize * cflNumber * 2))

    for step in range(numberOfSteps):

        if step % 5 == 0:
            for viewer in viewers:
                viewer.plot()

        if step % levelSetUpdateFrequency == 0:
            distanceVar.calcDistanceFunction()
            
        extensionVelocityVariable.setValue(depositionRateVariable())

        distanceVar.updateOld()
        catalystVar.updateOld()
        metalVar.updateOld()
        bulkCatalystVar.updateOld()

        distanceVar.extendVariable(extensionVelocityVariable)
        dt = cflNumber * cellSize / numerix.max(extensionVelocityVariable)

        advectionEquation.solve(distanceVar, dt = dt) 
        surfactantEquation.solve(catalystVar, dt = dt)
        metalEquation.solve(metalVar, dt = dt, 
                            boundaryConditions = metalEquationBCs)
        bulkCatalystEquation.solve(bulkCatalystVar, dt = dt,
                                   boundaryConditions = catalystBCs)

    try:
        import os
        import examples.levelSet.electroChem
        filepath = os.path.join(examples.levelSet.electroChem.__path__[0], 'test.gz')
        
        from fipy.tools import dump
        from fipy.tools import numerix
        print catalystVar.allclose(numerix.array(dump.read(filepath)), rtol = 1e-4)
    except:
        return 0