예제 #1
0
    def __init__(self, a, row_bcs=[], col_bcs=[], fc_params=None, appctx=None):
        self.a = a
        self.aT = a.T if isinstance(self.a, slate.TensorBase) else adjoint(a)
        self.fc_params = fc_params
        self.appctx = appctx

        self.row_bcs = row_bcs
        self.col_bcs = col_bcs

        # create functions from test and trial space to help
        # with 1-form assembly
        test_space, trial_space = [
            a.arguments()[i].function_space() for i in (0, 1)
        ]
        from firedrake import function

        self._y = function.Function(test_space)
        self._x = function.Function(trial_space)

        # These are temporary storage for holding the BC
        # values during matvec application.  _xbc is for
        # the action and ._ybc is for transpose.
        if len(self.row_bcs) > 0:
            self._xbc = function.Function(trial_space)
        if len(self.col_bcs) > 0:
            self._ybc = function.Function(test_space)

        # Get size information from template vecs on test and trial spaces
        trial_vec = trial_space.dof_dset.layout_vec
        test_vec = test_space.dof_dset.layout_vec
        self.col_sizes = trial_vec.getSizes()
        self.row_sizes = test_vec.getSizes()

        self.block_size = (test_vec.getBlockSize(), trial_vec.getBlockSize())

        if isinstance(self.a, slate.TensorBase):
            self.action = self.a * slate.AssembledVector(self._x)
            self.actionT = self.aT * slate.AssembledVector(self._y)
        else:
            self.action = action(self.a, self._x)
            self.actionT = action(self.aT, self._y)

        from firedrake.assemble import create_assembly_callable
        self._assemble_action = create_assembly_callable(
            self.action,
            tensor=self._y,
            form_compiler_parameters=self.fc_params)

        self._assemble_actionT = create_assembly_callable(
            self.actionT,
            tensor=self._x,
            form_compiler_parameters=self.fc_params)
예제 #2
0
    def initialize(self, pc):
        self.options_prefix = f"{pc.getOptionsPrefix()}custom_primal_dual_"
        print(self.options_prefix)
        _, P = pc.getOperators()
        context = P.getPythonContext()
        appctx = self.get_appctx(pc)
        test, trial = context.a.arguments()
        appctx["V"] = test.function_space()
        if "state" in appctx and "velocity_space" in appctx:
            appctx["u_k"] = appctx["state"].split()[appctx["velocity_space"]]

        problem = appctx["problem"]
        linear_form = self.form(appctx, problem)

        self.a = self.assemble_ele_schur(linear_form)
        AA = Tensor(self.a)
        A = AA.blocks
        schur = A[1, 0] * A[0, 0].inv * A[0, 1]
        Q = A[1, 1]

        bcs = appctx["bcs"] if "bcs" in appctx else context.row_bcs
        self.A_schur = allocate_matrix(
            schur,
            bcs=bcs,
            form_compiler_parameters=context.fc_params,
            mat_type="aij",
            options_prefix=self.options_prefix)
        self._assemble_form_schur = create_assembly_callable(
            schur,
            tensor=self.A_schur,
            bcs=bcs,
            form_compiler_parameters=context.fc_params,
            mat_type="aij")

        self._assemble_form_schur()
        self.ksp_schur = self.setup_ksp(self.A_schur.petscmat, pc)

        self.A_Q = allocate_matrix(Q,
                                   bcs=bcs,
                                   form_compiler_parameters=context.fc_params,
                                   mat_type="aij",
                                   options_prefix=self.options_prefix)
        self._assemble_form_Q = create_assembly_callable(
            Q,
            tensor=self.A_Q,
            bcs=bcs,
            form_compiler_parameters=context.fc_params,
            mat_type="aij")

        self._assemble_form_Q()
        self.ksp_Q = self.setup_ksp(self.A_Q.petscmat, pc)
예제 #3
0
    def initialize(self, pc):
        self.options_prefix = f"{pc.getOptionsPrefix()}custom_{self.prefix}_"
        print(self.options_prefix)
        _, P = pc.getOperators()
        context = P.getPythonContext()
        appctx = self.get_appctx(pc)
        test, trial = context.a.arguments()
        appctx["V"] = test.function_space()
        if "state" in appctx and "velocity_space" in appctx:
            appctx["u_k"] = appctx["state"].split()[appctx["velocity_space"]]

        problem = appctx["problem"]
        linear_form = self.form(appctx, problem)
        self.a = self.assemble_ele_schur(linear_form)

        bcs = appctx["bcs"] if "bcs" in appctx else context.row_bcs

        self.A = allocate_matrix(self.a,
                                 bcs=bcs,
                                 form_compiler_parameters=context.fc_params,
                                 mat_type="aij",
                                 options_prefix=self.options_prefix)
        self._assemble_form = create_assembly_callable(
            self.a,
            tensor=self.A,
            bcs=bcs,
            form_compiler_parameters=context.fc_params,
            mat_type="aij")

        self._assemble_form()
        self.ksp = self.setup_ksp(self.A.petscmat, pc)
예제 #4
0
 def _assemble_pjac(self):
     from firedrake.assemble import create_assembly_callable
     return create_assembly_callable(self.Jp,
                                     tensor=self._pjac,
                                     bcs=self.bcs_Jp,
                                     form_compiler_parameters=self.fcp,
                                     mat_type=self.pmat_type)
예제 #5
0
    def local_solver_calls(self, A, rhs, x, elim_fields):
        """Provides solver callbacks for inverting local operators
        and reconstructing eliminated fields.

        :arg A: A Slate Tensor containing the mixed bilinear form.
        :arg rhs: A firedrake function for the right-hand side.
        :arg x: A firedrake function for the solution.
        :arg elim_fields: An iterable of eliminated field indices
                          to recover.
        """

        from firedrake.slate.static_condensation.la_utils import backward_solve
        from firedrake.assemble import create_assembly_callable

        fields = x.split()
        systems = backward_solve(A, rhs, x, reconstruct_fields=elim_fields)

        local_solvers = []
        for local_system in systems:
            Ae = local_system.lhs
            be = local_system.rhs
            i, = local_system.field_idx
            local_solve = Ae.solve(be, decomposition="PartialPivLU")
            solve_call = create_assembly_callable(
                local_solve,
                tensor=fields[i],
                form_compiler_parameters=self.cxt.fc_params)
            local_solvers.append(solve_call)

        return local_solvers
예제 #6
0
    def __init__(self, problem, mat_type, pmat_type, appctx=None,
                 pre_jacobian_callback=None, pre_function_callback=None,
                 options_prefix=None):
        from firedrake.assemble import create_assembly_callable
        if pmat_type is None:
            pmat_type = mat_type
        self.mat_type = mat_type
        self.pmat_type = pmat_type
        self.options_prefix = options_prefix

        matfree = mat_type == 'matfree'
        pmatfree = pmat_type == 'matfree'

        self._problem = problem
        self._pre_jacobian_callback = pre_jacobian_callback
        self._pre_function_callback = pre_function_callback

        self.fcp = problem.form_compiler_parameters
        # Function to hold current guess
        self._x = problem.u

        if appctx is None:
            appctx = {}
        # A split context will already get the full state.
        # TODO, a better way of doing this.
        # Now we don't have a temporary state inside the snes
        # context we could just require the user to pass in the
        # full state on the outside.
        appctx.setdefault("state", self._x)
        appctx.setdefault("form_compiler_parameters", self.fcp)

        self.appctx = appctx
        self.matfree = matfree
        self.pmatfree = pmatfree
        self.F = problem.F
        self.J = problem.J

        if mat_type != pmat_type or problem.Jp is not None:
            # Need separate pmat if either Jp is different or we want
            # a different pmat type to the mat type.
            if problem.Jp is None:
                self.Jp = self.J
            else:
                self.Jp = problem.Jp
        else:
            # pmat_type == mat_type and Jp is None
            self.Jp = None

        self._assemble_residual = create_assembly_callable(self.F,
                                                           tensor=self._F,
                                                           form_compiler_parameters=self.fcp)

        self._jacobian_assembled = False
        self._splits = {}
        self._coarse = None
        self._fine = None

        self._nullspace = None
        self._nullspace_T = None
        self._near_nullspace = None
예제 #7
0
 def _assemble_diagonal(self):
     from firedrake.assemble import create_assembly_callable
     return create_assembly_callable(
         self.a,
         tensor=self._diagonal,
         form_compiler_parameters=self.fc_params,
         diagonal=True)
예제 #8
0
    def local_solver_calls(self, A, rhs, x, elim_fields):
        """Provides solver callbacks for inverting local operators
        and reconstructing eliminated fields.

        :arg A: A Slate Tensor containing the mixed bilinear form.
        :arg rhs: A firedrake function for the right-hand side.
        :arg x: A firedrake function for the solution.
        :arg elim_fields: An iterable of eliminated field indices
                          to recover.
        """

        from firedrake.slate.static_condensation.la_utils import backward_solve
        from firedrake.assemble import create_assembly_callable

        fields = x.split()
        systems = backward_solve(A, rhs, x, reconstruct_fields=elim_fields)

        local_solvers = []
        for local_system in systems:
            Ae = local_system.lhs
            be = local_system.rhs
            i, = local_system.field_idx
            local_solve = Ae.solve(be, decomposition="PartialPivLU")
            solve_call = create_assembly_callable(
                local_solve,
                tensor=fields[i],
                form_compiler_parameters=self.cxt.fc_params)
            local_solvers.append(solve_call)

        return local_solvers
예제 #9
0
    def _reconstruction_calls(self, split_mixed_op, split_trace_op):
        """This generates the reconstruction calls for the unknowns using the
        Lagrange multipliers.

        :arg split_mixed_op: a ``dict`` of split forms that make up the broken
                             mixed operator from the original problem.
        :arg split_trace_op: a ``dict`` of split forms that make up the trace
                             contribution in the hybridized mixed system.
        """

        from firedrake.assemble import create_assembly_callable

        # We always eliminate the velocity block first
        id0, id1 = (self.vidx, self.pidx)

        # TODO: When PyOP2 is able to write into mixed dats,
        # the reconstruction expressions can simplify into
        # one clean expression.
        A = Tensor(split_mixed_op[(id0, id0)])
        B = Tensor(split_mixed_op[(id0, id1)])
        C = Tensor(split_mixed_op[(id1, id0)])
        D = Tensor(split_mixed_op[(id1, id1)])
        K_0 = Tensor(split_trace_op[(0, id0)])
        K_1 = Tensor(split_trace_op[(0, id1)])

        # Split functions and reconstruct each bit separately
        split_residual = self.broken_residual.split()
        split_sol = self.broken_solution.split()
        g = AssembledVector(split_residual[id0])
        f = AssembledVector(split_residual[id1])
        sigma = split_sol[id0]
        u = split_sol[id1]
        lambdar = AssembledVector(self.trace_solution)

        M = D - C * A.inv * B
        R = K_1.T - C * A.inv * K_0.T
        u_rec = M.solve(f - C * A.inv * g - R * lambdar,
                        decomposition="PartialPivLU")
        self._sub_unknown = create_assembly_callable(
            u_rec, tensor=u, form_compiler_parameters=self.ctx.fc_params)

        sigma_rec = A.solve(g - B * AssembledVector(u) - K_0.T * lambdar,
                            decomposition="PartialPivLU")
        self._elim_unknown = create_assembly_callable(
            sigma_rec,
            tensor=sigma,
            form_compiler_parameters=self.ctx.fc_params)
예제 #10
0
def assemble_firedrake(dual_lin, bcs=[]):
    matrix = allocate_matrix(dual_lin, bcs=bcs, mat_type="aij")
    _assemble_form = create_assembly_callable(
        dual_lin, tensor=matrix, bcs=bcs, mat_type="aij")
    _assemble_form()
    ai, aj, av = matrix.petscmat.getValuesCSR()
    matrix_scipy = sp.sparse.csr_matrix((av, aj, ai))
    return matrix_scipy
예제 #11
0
    def _reconstruction_calls(self, split_mixed_op, split_trace_op):
        """This generates the reconstruction calls for the unknowns using the
        Lagrange multipliers.

        :arg split_mixed_op: a ``dict`` of split forms that make up the broken
                             mixed operator from the original problem.
        :arg split_trace_op: a ``dict`` of split forms that make up the trace
                             contribution in the hybridized mixed system.
        """
        from firedrake.assemble import create_assembly_callable

        # We always eliminate the velocity block first
        id0, id1 = (self.vidx, self.pidx)

        # TODO: When PyOP2 is able to write into mixed dats,
        # the reconstruction expressions can simplify into
        # one clean expression.
        A = Tensor(split_mixed_op[(id0, id0)])
        B = Tensor(split_mixed_op[(id0, id1)])
        C = Tensor(split_mixed_op[(id1, id0)])
        D = Tensor(split_mixed_op[(id1, id1)])
        K_0 = Tensor(split_trace_op[(0, id0)])
        K_1 = Tensor(split_trace_op[(0, id1)])

        # Split functions and reconstruct each bit separately
        split_residual = self.broken_residual.split()
        split_sol = self.broken_solution.split()
        g = AssembledVector(split_residual[id0])
        f = AssembledVector(split_residual[id1])
        sigma = split_sol[id0]
        u = split_sol[id1]
        lambdar = AssembledVector(self.trace_solution)

        M = D - C * A.inv * B
        R = K_1.T - C * A.inv * K_0.T
        u_rec = M.solve(f - C * A.inv * g - R * lambdar,
                        decomposition="PartialPivLU")
        self._sub_unknown = create_assembly_callable(u_rec,
                                                     tensor=u,
                                                     form_compiler_parameters=self.ctx.fc_params)

        sigma_rec = A.solve(g - B * AssembledVector(u) - K_0.T * lambdar,
                            decomposition="PartialPivLU")
        self._elim_unknown = create_assembly_callable(sigma_rec,
                                                      tensor=sigma,
                                                      form_compiler_parameters=self.ctx.fc_params)
예제 #12
0
    def __init__(self, a, row_bcs=[], col_bcs=[],
                 fc_params=None, appctx=None):
        self.a = a
        self.aT = adjoint(a)
        self.fc_params = fc_params
        self.appctx = appctx

        self.row_bcs = row_bcs
        self.col_bcs = col_bcs

        # create functions from test and trial space to help
        # with 1-form assembly
        test_space, trial_space = [
            a.arguments()[i].function_space() for i in (0, 1)
        ]
        from firedrake import function

        self._y = function.Function(test_space)
        self._x = function.Function(trial_space)

        # These are temporary storage for holding the BC
        # values during matvec application.  _xbc is for
        # the action and ._ybc is for transpose.
        if len(self.row_bcs) > 0:
            self._xbc = function.Function(trial_space)
        if len(self.col_bcs) > 0:
            self._ybc = function.Function(test_space)

        # Get size information from template vecs on test and trial spaces
        trial_vec = trial_space.dof_dset.layout_vec
        test_vec = test_space.dof_dset.layout_vec
        self.col_sizes = trial_vec.getSizes()
        self.row_sizes = test_vec.getSizes()

        self.block_size = (test_vec.getBlockSize(), trial_vec.getBlockSize())

        self.action = action(self.a, self._x)
        self.actionT = action(self.aT, self._y)

        from firedrake.assemble import create_assembly_callable
        self._assemble_action = create_assembly_callable(self.action, tensor=self._y,
                                                         form_compiler_parameters=self.fc_params)

        self._assemble_actionT = create_assembly_callable(self.actionT, tensor=self._x,
                                                          form_compiler_parameters=self.fc_params)
예제 #13
0
 def _rhs(self):
     from firedrake.assemble import create_assembly_callable
     u = function.Function(self.trial_space)
     b = function.Function(self.test_space)
     if isinstance(self.A.a, slate.TensorBase):
         expr = -self.A.a * slate.AssembledVector(u)
     else:
         expr = -ufl.action(self.A.a, u)
     return u, create_assembly_callable(expr, tensor=b), b
예제 #14
0
    def initialize(self, pc):
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        _, P = pc.getOperators()

        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")
        opc = pc
        context = P.getPythonContext()
        prefix = pc.getOptionsPrefix()
        options_prefix = prefix + "assembled_"

        # It only makes sense to preconditioner/invert a diagonal
        # block in general.  That's all we're going to allow.
        if not context.on_diag:
            raise ValueError("Only makes sense to invert diagonal block")

        mat_type = PETSc.Options().getString(options_prefix + "mat_type",
                                             "aij")
        self.P = allocate_matrix(context.a,
                                 bcs=context.row_bcs,
                                 form_compiler_parameters=context.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=options_prefix)
        self._assemble_P = create_assembly_callable(
            context.a,
            tensor=self.P,
            bcs=context.row_bcs,
            form_compiler_parameters=context.fc_params,
            mat_type=mat_type)
        self._assemble_P()
        self.P.force_evaluation()

        # Transfer nullspace over
        Pmat = self.P.petscmat
        Pmat.setNullSpace(P.getNullSpace())
        tnullsp = P.getTransposeNullSpace()
        if tnullsp.handle != 0:
            Pmat.setTransposeNullSpace(tnullsp)

        # Internally, we just set up a PC object that the user can configure
        # however from the PETSc command line.  Since PC allows the user to specify
        # a KSP, we can do iterative by -assembled_pc_type ksp.
        pc = PETSc.PC().create(comm=opc.comm)
        pc.incrementTabLevel(1, parent=opc)
        pc.setOptionsPrefix(options_prefix)
        pc.setOperators(Pmat, Pmat)
        pc.setFromOptions()
        pc.setUp()
        self.pc = pc
예제 #15
0
    def _build_up_solver(self):
        """Constructs the solver for the velocity-pressure increments."""

        from firedrake.assemble import create_assembly_callable

        # strong no-slip boundary conditions on the top
        # and bottom of the atmospheric domain
        bcs = [
            DirichletBC(self._Wmixed.sub(0), 0.0, "bottom"),
            DirichletBC(self._Wmixed.sub(0), 0.0, "top")
        ]

        un, pn, bn = self._state.split()

        utest, ptest = TestFunctions(self._Wmixed)
        u, p = TrialFunctions(self._Wmixed)

        def outward(arg):
            return cross(self._khat, arg)

        # Linear gravity wave system for the velocity and pressure
        # increments (buoyancy has been eliminated in the discrete
        # equations since there is no orography)
        a_up = (
            ptest * p + self._dt_half_c2 * ptest * div(u) -
            self._dt_half * div(utest) * p +
            (dot(utest, u) + self._dt_half * dot(utest, self._f * outward(u)) +
             self._omega_N2 * dot(utest, self._khat) * dot(u, self._khat))
        ) * dx

        L_up = (dot(utest, un) +
                self._dt_half * dot(utest, self._f * outward(un)) +
                self._dt_half * dot(utest, self._khat * bn) + ptest * pn) * dx

        # Set up linear solver
        up_problem = LinearVariationalProblem(a_up, L_up, self._up, bcs=bcs)
        params = self._params
        solver = LinearVariationalSolver(up_problem,
                                         solver_parameters=params,
                                         options_prefix='up-implicit-solver')
        self.up_solver = solver

        r = action(a_up, self._up) - L_up
        self._assemble_upr = create_assembly_callable(r,
                                                      tensor=self._up_residual)
예제 #16
0
파일: morpc.py 프로젝트: DWolfr/mor
    def assembleK(self):
        ctx = self.ctx
        mat_type = PETSc.Options().getString(
            self.prefix + "assembled_mat_type", "aij")

        self.K = allocate_matrix(ctx.a,
                                 bcs=ctx.row_bcs,
                                 form_compiler_parameters=ctx.fc_params,
                                 mat_type=mat_type)

        self._assemble_K = create_assembly_callable(
            ctx.a,
            tensor=self.K,
            bcs=ctx.row_bcs,
            form_compiler_parameters=ctx.fc_params,
            mat_type=mat_type)
        self._assemble_K()

        self.mat_type = mat_type

        self.K.force_evaluation()
예제 #17
0
    def initialize(self, pc):
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        _, P = pc.getOperators()

        context = P.getPythonContext()
        prefix = pc.getOptionsPrefix()

        # It only makes sense to preconditioner/invert a diagonal
        # block in general.  That's all we're going to allow.
        if not context.on_diag:
            raise ValueError("Only makes sense to invert diagonal block")

        mat_type = PETSc.Options().getString(prefix + "assembled_mat_type", "aij")
        self.P = allocate_matrix(context.a, bcs=context.row_bcs,
                                 form_compiler_parameters=context.fc_params,
                                 mat_type=mat_type)
        self._assemble_P = create_assembly_callable(context.a, tensor=self.P,
                                                    bcs=context.row_bcs,
                                                    form_compiler_parameters=context.fc_params,
                                                    mat_type=mat_type)
        self._assemble_P()
        self.mat_type = mat_type
        self.P.force_evaluation()

        # Transfer nullspace over
        Pmat = self.P.petscmat
        Pmat.setNullSpace(P.getNullSpace())
        Pmat.setTransposeNullSpace(P.getTransposeNullSpace())

        # Internally, we just set up a PC object that the user can configure
        # however from the PETSc command line.  Since PC allows the user to specify
        # a KSP, we can do iterative by -assembled_pc_type ksp.
        pc = PETSc.PC().create()
        pc.setOptionsPrefix(prefix+"assembled_")
        pc.setOperators(Pmat, Pmat)
        pc.setUp()
        pc.setFromOptions()
        self.pc = pc
예제 #18
0
    def initialize(self, pc):
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        _, P = pc.getOperators()

        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")
        opc = pc
        appctx = self.get_appctx(pc)
        fcp = appctx.get("form_compiler_parameters")

        V = get_function_space(pc.getDM())
        if len(V) == 1:
            V = FunctionSpace(V.mesh(), V.ufl_element())
        else:
            V = MixedFunctionSpace([V_ for V_ in V])
        test = TestFunction(V)
        trial = TrialFunction(V)

        if P.type == "python":
            context = P.getPythonContext()
            # It only makes sense to preconditioner/invert a diagonal
            # block in general.  That's all we're going to allow.
            if not context.on_diag:
                raise ValueError("Only makes sense to invert diagonal block")

        prefix = pc.getOptionsPrefix()
        options_prefix = prefix + self._prefix

        mat_type = PETSc.Options().getString(options_prefix + "mat_type", "aij")

        (a, bcs) = self.form(pc, test, trial)

        self.P = allocate_matrix(a, bcs=bcs,
                                 form_compiler_parameters=fcp,
                                 mat_type=mat_type,
                                 options_prefix=options_prefix)
        self._assemble_P = create_assembly_callable(a, tensor=self.P,
                                                    bcs=bcs,
                                                    form_compiler_parameters=fcp,
                                                    mat_type=mat_type)
        self._assemble_P()
        self.P.force_evaluation()

        # Transfer nullspace over
        Pmat = self.P.petscmat
        Pmat.setNullSpace(P.getNullSpace())
        tnullsp = P.getTransposeNullSpace()
        if tnullsp.handle != 0:
            Pmat.setTransposeNullSpace(tnullsp)

        # Internally, we just set up a PC object that the user can configure
        # however from the PETSc command line.  Since PC allows the user to specify
        # a KSP, we can do iterative by -assembled_pc_type ksp.
        pc = PETSc.PC().create(comm=opc.comm)
        pc.incrementTabLevel(1, parent=opc)

        # We set a DM and an appropriate SNESContext on the constructed PC so one
        # can do e.g. multigrid or patch solves.
        from firedrake.variational_solver import NonlinearVariationalProblem
        from firedrake.solving_utils import _SNESContext
        dm = opc.getDM()
        octx = get_appctx(dm)
        oproblem = octx._problem
        nproblem = NonlinearVariationalProblem(oproblem.F, oproblem.u, bcs, J=a, form_compiler_parameters=fcp)
        nctx = _SNESContext(nproblem, mat_type, mat_type, octx.appctx)
        push_appctx(dm, nctx)
        pc.setDM(dm)

        pc.setOptionsPrefix(options_prefix)
        pc.setOperators(Pmat, Pmat)
        pc.setFromOptions()
        pc.setUp()
        self.pc = pc
        pop_appctx(dm)
예제 #19
0
    def __init__(self, Vc, Vf):
        meshc = Vc.mesh()
        meshf = Vf.mesh()
        self.Vc = Vc
        self.Vf = Vf
        P1c = VectorFunctionSpace(meshc, "CG", 1)
        FBc = VectorFunctionSpace(meshc, "FacetBubble", 3)
        P1f = VectorFunctionSpace(meshf, "CG", 1)
        FBf = VectorFunctionSpace(meshf, "FacetBubble", 3)

        self.p1c = Function(P1c)
        self.fbc = Function(FBc)
        self.p1f = Function(P1f)
        self.fbf = Function(FBf)
        self.rhs = Function(FBc)

        trial = TrialFunction(FBc)
        test = TestFunction(FBc)
        n = FacetNormal(meshc)
        a = inner(inner(trial, n), inner(test, n)) + inner(
            trial - inner(trial, n) * n, test - inner(test, n) * n)
        a = a * ds + avg(a) * dS
        A = assemble(a).M.handle.getDiagonal()
        # A is diagonal, so "solve" by dividing by the diagonal.
        ainv = A.copy()
        ainv.reciprocal()
        self.ainv = ainv
        L = inner(inner(self.fbc, n) / 0.625, inner(test, n)) + inner(
            self.fbc - inner(self.fbc, n) * n, test - inner(test, n) * n)
        L = L * ds + avg(L) * dS
        # This is the guts of assemble(L, tensor=self.rhs), but saves a little time
        self.assemble_rhs = create_assembly_callable(L, tensor=self.rhs)

        # TODO: Parameterise these by the element definition.
        # These are correct for P1 + FB in 3D.
        # Dof layout for the combined element on the reference cell is:
        # 4 vertex dofs, then 4 face dofs.
        """
        These two kernels perform a change of basis from a nodal to a
        hierachichal basis ("split") and then back from a hierachichal
        basis to a nodal basis ("combine").  The nodal functionspace is
        given by P1FB, the hierachichal one is given by two spaces: P1 and
        FB. The splitting kernel is defined so that
            [a b] * [p1fb_1; ...;p1fb_8] = [p1_1;...;p1_4;fb_1;...;fb_4]
        and the combine kernel is defined so that
            [a;b] * [p1_1;...;p1_4;fb_1;...;fb_4] = [p1fb_1;...;p1fb_8]

        Notation: [x;y]: vertically stack x and y, [x y]: horizontally stacked
        """
        self.split_kernel = op2.Kernel(
            """
void split(double p1[12], double fb[12], const double both[24]) {
//  for (int i = 0; i < 12; i++) {
//    p1[i] = 0;
//    fb[i] = 0;
//  }

  double a[8][4] = {{1., 0., 0., 0.},
                    {0., 1., 0., 0.},
                    {0., 0., 1., 0.},
                    {0., 0., 0., 1.},
                    {0., 0., 0., 0.},
                    {0., 0., 0., 0.},
                    {0., 0., 0., 0.},
                    {0., 0., 0., 0.}};

  double b[8][4] = {{0., -1./3, -1./3, -1./3},
                    {-1./3, 0., -1./3, -1./3},
                    {-1./3, -1./3, 0., -1./3},
                    {-1./3, -1./3, -1./3, 0.},
                    {1., 0., 0., 0.},
                    {0., 1., 0., 0.},
                    {0., 0., 1., 0.},
                    {0., 0., 0., 1.}};


  for (int k = 0; k < 8; k++) {
    for (int i = 0; i < 4; i++) {
      for (int j = 0; j < 3; j++) {
        p1[3 * i + j] += a[k][i] * both[3 * k + j];
        fb[3 * i + j] += b[k][i] * both[3 * k + j];
      }
    }
  }
}""", "split")

        self.split_kernel_adj = op2.Kernel(
            """
void splitadj(const double p1[12], const double fb[12], double both[24]) {
  //for (int i = 0; i < 24; i++) both[i] = 0;

  double a[8][4] = {{1., 0., 0., 0.},
                    {0., 1., 0., 0.},
                    {0., 0., 1., 0.},
                    {0., 0., 0., 1.},
                    {0., 0., 0., 0.},
                    {0., 0., 0., 0.},
                    {0., 0., 0., 0.},
                    {0., 0., 0., 0.}};

  double b[8][4] = {{0., -1./3, -1./3, -1./3},
                    {-1./3, 0., -1./3, -1./3},
                    {-1./3, -1./3, 0., -1./3},
                    {-1./3, -1./3, -1./3, 0.},
                    {1., 0., 0., 0.},
                    {0., 1., 0., 0.},
                    {0., 0., 1., 0.},
                    {0., 0., 0., 1.}};


  for (int k = 0; k < 8; k++) {
    for (int i = 0; i < 4; i++) {
      for (int j = 0; j < 3; j++) {
        both[3 * k + j] += a[k][i] * p1[3*i+j];
        both[3 * k + j] += b[k][i] * fb[3*i+j];
      }
    }
  }
}""", "splitadj")
        self.combine_kernel = op2.Kernel(
            """
void combine(const double p1[12], const double fb[12], double both[24]) {
  //for (int i = 0; i < 24; i++) both[i] = 0;

  double a[4][8] = {{1., 0., 0., 0., 0.,    1./3., 1./3., 1./3.},
                    {0., 1., 0., 0., 1./3., 0.,    1./3., 1./3.},
                    {0., 0., 1., 0., 1./3., 1./3., 0.,    1./3.},
                    {0., 0., 0., 1., 1./3., 1./3., 1./3., 0.   }};
  double b[4][8] = {{0., 0., 0., 0., 1., 0., 0., 0.},
                    {0., 0., 0., 0., 0., 1., 0., 0.},
                    {0., 0., 0., 0., 0., 0., 1., 0.},
                    {0., 0., 0., 0., 0., 0., 0., 1.}};

  for (int k = 0; k < 4; k++) {
    for (int i = 0; i < 8; i++) {
      for (int j = 0; j < 3; j++) {
        both[3 * i + j] += a[k][i] * p1[3 * k + j];
        both[3 * i + j] += b[k][i] * fb[3 * k + j];
      }
    }
  }
}
""", "combine")

        self.combine_kernel_adj = op2.Kernel(
            """
void combineadj(const double both[24], double p1[12], double fb[12]) {
  //for (int i = 0; i < 12; i++) {
  //  p1[i] = 0;
  //  fb[i] = 0;
  //}

  double a[4][8] = {{1., 0., 0., 0., 0.,    1./3., 1./3., 1./3.},
                    {0., 1., 0., 0., 1./3., 0.,    1./3., 1./3.},
                    {0., 0., 1., 0., 1./3., 1./3., 0.,    1./3.},
                    {0., 0., 0., 1., 1./3., 1./3., 1./3., 0.   }};
  double b[4][8] = {{0., 0., 0., 0., 1., 0., 0., 0.},
                    {0., 0., 0., 0., 0., 1., 0., 0.},
                    {0., 0., 0., 0., 0., 0., 1., 0.},
                    {0., 0., 0., 0., 0., 0., 0., 1.}};

  for (int k = 0; k < 4; k++) {
    for (int i = 0; i < 8; i++) {
      for (int j = 0; j < 3; j++) {
        p1[3 * k + j] += a[k][i] * both[3 * i + j];
        fb[3 * k + j] += b[k][i] * both[3 * i + j];
      }
    }
  }
}
""", "combineadj")
        self.count_kernel = op2.Kernel(
            """
void count(double both[24], double fb[12], double p1[12]) {
  for (int i = 0; i < 24; i++) {
    both[i] += 1;
  }
  for (int i = 0; i < 12; i++) {
    fb[i] += 1;
    p1[i] += 1;
  }
}
""", "count")
        self.countp1f = Function(self.p1f.function_space())
        self.countfbf = Function(self.fbf.function_space())
        self.countvf = Function(self.Vf)
        self.countp1c = Function(self.p1c.function_space())
        self.countfbc = Function(self.fbc.function_space())
        self.countvc = Function(self.Vc)
        op2.par_loop(self.count_kernel,
                     self.countp1f.ufl_domain().cell_set,
                     self.countvf.dat(op2.INC, self.countvf.cell_node_map()),
                     self.countfbf.dat(op2.INC, self.countfbf.cell_node_map()),
                     self.countp1f.dat(op2.INC, self.countp1f.cell_node_map()))
        op2.par_loop(self.count_kernel,
                     self.countp1c.ufl_domain().cell_set,
                     self.countvc.dat(op2.INC, self.countvc.cell_node_map()),
                     self.countfbc.dat(op2.INC, self.countfbc.cell_node_map()),
                     self.countp1c.dat(op2.INC, self.countp1c.cell_node_map()))
예제 #20
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from ufl.algorithms.map_integrands import map_integrand_dags
        from firedrake import (FunctionSpace, TrialFunction, TrialFunctions,
                               TestFunction, Function, BrokenElement,
                               MixedElement, FacetNormal, Constant,
                               DirichletBC, Projector)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import ArgumentReplacer, split_form

        # Extract the problem context
        prefix = pc.getOptionsPrefix()
        _, P = pc.getOperators()
        context = P.getPythonContext()
        test, trial = context.a.arguments()

        V = test.function_space()
        if V.mesh().cell_set._extruded:
            # TODO: Merge FIAT branch to support TPC trace elements
            raise NotImplementedError("Not implemented on extruded meshes.")

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = [BrokenElement(Vi.ufl_element()) for Vi in V]
        elem = MixedElement(broken_elements)
        V_d = FunctionSpace(V.mesh(), elem)
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}

        # Replace the problems arguments with arguments defined
        # on the new discontinuous spaces
        replacer = ArgumentReplacer(arg_map)
        new_form = map_integrand_dags(replacer, context.a)

        # Create the space of approximate traces.
        # The vector function space will have a non-empty value_shape
        W = next(v for v in V if bool(v.ufl_element().value_shape()))
        if W.ufl_element().family() in ["Raviart-Thomas", "RTCF"]:
            tdegree = W.ufl_element().degree() - 1

        else:
            tdegree = W.ufl_element().degree()

        # NOTE: Once extruded is ready, we will need to be aware of this
        # and construct the appropriate trace space for the HDiv element
        TraceSpace = FunctionSpace(V.mesh(), "HDiv Trace", tdegree)

        # NOTE: For extruded, we will need to add "on_top" and "on_bottom"
        trace_conditions = [
            DirichletBC(TraceSpace, Constant(0.0), "on_boundary")
        ]

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_rhs = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_rhs = Function(V)

        # Create the symbolic Schur-reduction
        Atilde = Tensor(new_form)
        gammar = TestFunction(TraceSpace)
        n = FacetNormal(V.mesh())

        # Vector trial function will have a non-empty ufl_shape
        sigma = next(f for f in TrialFunctions(V_d) if bool(f.ufl_shape))

        # NOTE: Once extruded is ready, this will change slightly
        # to include both horizontal and vertical interior facets
        K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * self.broken_rhs,
            tensor=self.schur_rhs,
            form_compiler_parameters=context.fc_params)

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_conditions,
                                 form_compiler_parameters=context.fc_params)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_conditions,
            form_compiler_parameters=context.fc_params)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Nullspace for the multiplier problem
        nullsp = P.getNullSpace()
        if nullsp.handle != 0:
            new_vecs = get_trace_nullspace_vecs(K * Atilde.inv, nullsp, V, V_d,
                                                TraceSpace)
            tr_nullsp = PETSc.NullSpace().create(vectors=new_vecs,
                                                 comm=pc.comm)
            Smat.setNullSpace(tr_nullsp)

        # Set up the KSP for the system of Lagrange multipliers
        ksp = PETSc.KSP().create(comm=pc.comm)
        ksp.setOptionsPrefix(prefix + "trace_")
        ksp.setTolerances(rtol=1e-13)
        ksp.setOperators(Smat)
        ksp.setUp()
        ksp.setFromOptions()
        self.ksp = ksp

        # Now we construct the local tensors for the reconstruction stage
        # TODO: Add support for mixed tensors and these variables
        # become unnecessary
        split_forms = split_form(new_form)
        A = Tensor(next(sf.form for sf in split_forms if sf.indices == (0, 0)))
        B = Tensor(next(sf.form for sf in split_forms if sf.indices == (1, 0)))
        C = Tensor(next(sf.form for sf in split_forms if sf.indices == (1, 1)))
        trial = TrialFunction(
            FunctionSpace(V.mesh(), BrokenElement(W.ufl_element())))
        K_local = Tensor(gammar('+') * ufl.dot(trial, n) * ufl.dS)

        # Split functions and reconstruct each bit separately
        sigma_h, u_h = self.broken_solution.split()
        g, f = self.broken_rhs.split()

        # Pressure reconstruction
        M = B * A.inv * B.T + C
        u_sol = M.inv * f + M.inv * (
            B * A.inv * K_local.T * self.trace_solution - B * A.inv * g)
        self._assemble_pressure = create_assembly_callable(
            u_sol, tensor=u_h, form_compiler_parameters=context.fc_params)

        # Velocity reconstruction
        sigma_sol = A.inv * g + A.inv * (B.T * u_h -
                                         K_local.T * self.trace_solution)
        self._assemble_velocity = create_assembly_callable(
            sigma_sol,
            tensor=sigma_h,
            form_compiler_parameters=context.fc_params)

        # Set up the projector for projecting the broken solution
        # into the unbroken finite element spaces
        # NOTE: Tolerance here matters!
        sigma_b, _ = self.broken_solution.split()
        sigma_u, _ = self.unbroken_solution.split()
        self.projector = Projector(sigma_b,
                                   sigma_u,
                                   solver_parameters={
                                       "ksp_type": "cg",
                                       "ksp_rtol": 1e-13
                                   })
예제 #21
0
    def __init__(
        self,
        problem,
        mat_type,
        pmat_type,
        appctx=None,
        pre_jacobian_callback=None,
        pre_function_callback=None,
        post_jacobian_callback=None,
        post_function_callback=None,
        options_prefix=None,
        transfer_manager=None,
    ):
        from firedrake.assemble import create_assembly_callable
        from firedrake.bcs import DirichletBC

        if pmat_type is None:
            pmat_type = mat_type
        self.mat_type = mat_type
        self.pmat_type = pmat_type
        self.options_prefix = options_prefix

        matfree = mat_type == "matfree"
        pmatfree = pmat_type == "matfree"

        self._problem = problem
        self._pre_jacobian_callback = pre_jacobian_callback
        self._pre_function_callback = pre_function_callback
        self._post_jacobian_callback = post_jacobian_callback
        self._post_function_callback = post_function_callback

        self.fcp = problem.form_compiler_parameters
        # Function to hold current guess
        self._x = problem.u
        # Function to hold time derivative
        self._xdot = problem.udot
        # Constant to hold time shift value
        self._shift = problem.shift
        # Constant to hold current time value
        self._time = problem.time

        if appctx is None:
            appctx = {}
        # A split context will already get the full state.
        # TODO, a better way of doing this.
        # Now we don't have a temporary state inside the snes
        # context we could just require the user to pass in the
        # full state on the outside.
        appctx.setdefault("state", self._x)
        appctx.setdefault("form_compiler_parameters", self.fcp)

        self.appctx = appctx
        self.matfree = matfree
        self.pmatfree = pmatfree
        self.F = problem.F
        self.J = problem.J

        # For Jp to equal J, bc.Jp must equal bc.J for all EquationBC objects.
        Jp_eq_J = problem.Jp is None and all(bc.Jp_eq_J for bc in problem.bcs)

        if mat_type != pmat_type or not Jp_eq_J:
            # Need separate pmat if either Jp is different or we want
            # a different pmat type to the mat type.
            if problem.Jp is None:
                self.Jp = self.J
            else:
                self.Jp = problem.Jp
        else:
            # pmat_type == mat_type and Jp_eq_J
            self.Jp = None

        self.bcs_F = [
            bc if isinstance(bc, DirichletBC) else bc._F for bc in problem.bcs
        ]
        self.bcs_J = [
            bc if isinstance(bc, DirichletBC) else bc._J for bc in problem.bcs
        ]
        self.bcs_Jp = [
            bc if isinstance(bc, DirichletBC) else bc._Jp for bc in problem.bcs
        ]
        self._assemble_residual = create_assembly_callable(
            self.F,
            tensor=self._F,
            bcs=self.bcs_F,
            form_compiler_parameters=self.fcp)

        self._jacobian_assembled = False
        self._splits = {}
        self._coarse = None
        self._fine = None

        self._nullspace = None
        self._nullspace_T = None
        self._near_nullspace = None
        self._transfer_manager = transfer_manager
예제 #22
0
    def initialize(self, pc):
        from firedrake import TrialFunction, TestFunction, Function, DirichletBC, dx, \
             assemble, Mesh, inner, grad, split, Constant, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        prefix = pc.getOptionsPrefix() + "pcd_"

        _, P = pc.getOperators()
        context = P.getPythonContext()

        test, trial = context.a.arguments()

        Q = test.function_space()

        p = TrialFunction(Q)
        q = TestFunction(Q)

        nu = context.appctx["nu"]
        dt = context.appctx["dt"]

        mass = (1.0 / nu) * p * q * dx

        stiffness = inner(grad(p), grad(q)) * dx

        velid = context.appctx["velocity_space"]

        self.bcs = context.appctx["PCDbc"]

        opts = PETSc.Options()

        default = parameters["default_matrix_type"]
        Mp_mat_type = opts.getString(prefix + "Mp_mat_type", default)
        Kp_mat_type = opts.getString(prefix + "Kp_mat_type", default)
        Fp_mat_type = opts.getString(prefix + "Fp_mat_type", "matfree")

        Mp = assemble(mass,
                      form_compiler_parameters=context.fc_params,
                      mat_type=Mp_mat_type,
                      options_prefix=prefix + "Mp_")

        Kp = assemble(stiffness,
                      bcs=self.bcs,
                      form_compiler_parameters=context.fc_params,
                      mat_type=Kp_mat_type,
                      options_prefix=prefix + "Kp_")

        Mksp = PETSc.KSP().create(comm=pc.comm)
        Mksp.incrementTabLevel(1, parent=pc)
        Mksp.setOptionsPrefix(prefix + "Mp_")
        Mksp.setOperators(Mp.petscmat)
        Mksp.setUp()
        Mksp.setFromOptions()
        self.Mksp = Mksp

        Kksp = PETSc.KSP().create(comm=pc.comm)
        Kksp.incrementTabLevel(1, parent=pc)
        Kksp.setOptionsPrefix(prefix + "Kp_")
        Kksp.setOperators(Kp.petscmat)
        Kksp.setUp()
        Kksp.setFromOptions()
        self.Kksp = Kksp

        u = context.appctx["u"]
        fp = (1.0 / nu) * ((1.0 / dt) * p + dot(u, grad(p))) * q * dx

        Fp = allocate_matrix(fp,
                             form_compiler_parameters=context.fc_params,
                             mat_type=Fp_mat_type,
                             options_prefix=prefix + "Fp_")

        self._assemble_Fp = create_assembly_callable(
            fp,
            tensor=Fp,
            form_compiler_parameters=context.fc_params,
            mat_type=Fp_mat_type)

        self.Fp = Fp
        self._assemble_Fp()
        self.workspace = [Fp.petscmat.createVecLeft() for i in (0, 1)]

        self.tmp = Function(Q)
예제 #23
0
def gradient(
    model, mesh, comm, c, receivers, guess, residual, output=False, save_adjoint=False
):
    """Discrete adjoint with secord-order in time fully-explicit timestepping scheme
    with implementation of a Perfectly Matched Layer (PML) using
    CG FEM with or without higher order mass lumping (KMV type elements).

    Parameters
    ----------
    model: Python `dictionary`
        Contains model options and parameters
    mesh: Firedrake.mesh object
        The 2D/3D triangular mesh
    comm: Firedrake.ensemble_communicator
        The MPI communicator for parallelism
       c: Firedrake.Function
        The velocity model interpolated onto the mesh nodes.
    receivers: A :class:`spyro.Receivers` object.
        Contains the receiver locations and sparse interpolation methods.
    guess: A list of Firedrake functions
        Contains the forward wavefield at a set of timesteps
    residual: array-like [timesteps][receivers]
        The difference between the observed and modeled data at
        the receivers
    output: boolean
        optional, write the adjoint to disk (only for debugging)
    save_adjoint: A list of Firedrake functions
        Contains the adjoint at all timesteps

    Returns
    -------
    dJdc_local: A Firedrake.Function containing the gradient of
                the functional w.r.t. `c`
    adjoint: Optional, a list of Firedrake functions containing the adjoint

    """

    method = model["opts"]["method"]
    degree = model["opts"]["degree"]
    dim = model["opts"]["dimension"]
    dt = model["timeaxis"]["dt"]
    tf = model["timeaxis"]["tf"]
    nspool = model["timeaxis"]["nspool"]
    fspool = model["timeaxis"]["fspool"]
    PML = model["BCs"]["status"]
    if PML:
        Lx = model["mesh"]["Lx"]
        Lz = model["mesh"]["Lz"]
        lx = model["BCs"]["lx"]
        lz = model["BCs"]["lz"]
        x1 = 0.0
        x2 = Lx
        a_pml = lx
        z1 = 0.0
        z2 = -Lz
        c_pml = lz
        if dim == 3:
            Ly = model["mesh"]["Ly"]
            ly = model["BCs"]["ly"]
            y1 = 0.0
            y2 = Ly
            b_pml = ly

    if method == "KMV":
        params = {"ksp_type": "preonly", "pc_type": "jacobi"}
    elif method == "CG":
        params = {"ksp_type": "cg", "pc_type": "jacobi"}
    else:
        raise ValueError("method is not yet supported")

    element = space.FE_method(mesh, method, degree)

    V = FunctionSpace(mesh, element)

    qr_x, qr_s, _ = quadrature.quadrature_rules(V)

    nt = int(tf / dt)  # number of timesteps

    receiver_locations = model["acquisition"]["receiver_locations"]

    dJ = Function(V, name="gradient")

    if dim == 2:
        z, x = SpatialCoordinate(mesh)
    elif dim == 3:
        z, x, y = SpatialCoordinate(mesh)

    if PML:
        Z = VectorFunctionSpace(V.ufl_domain(), V.ufl_element())
        if dim == 2:
            W = V * Z
            u, pp = TrialFunctions(W)
            v, qq = TestFunctions(W)

            u_np1, pp_np1 = Function(W).split()
            u_n, pp_n = Function(W).split()
            u_nm1, pp_nm1 = Function(W).split()

        elif dim == 3:
            W = V * V * Z
            u, psi, pp = TrialFunctions(W)
            v, phi, qq = TestFunctions(W)

            u_np1, psi_np1, pp_np1 = Function(W).split()
            u_n, psi_n, pp_n = Function(W).split()
            u_nm1, psi_nm1, pp_nm1 = Function(W).split()

        if dim == 2:
            (sigma_x, sigma_z) = damping.functions(
                model, V, dim, x, x1, x2, a_pml, z, z1, z2, c_pml
            )
            (Gamma_1, Gamma_2) = damping.matrices_2D(sigma_z, sigma_x)
        elif dim == 3:

            sigma_x, sigma_y, sigma_z = damping.functions(
                model,
                V,
                dim,
                x,
                x1,
                x2,
                a_pml,
                z,
                z1,
                z2,
                c_pml,
                y,
                y1,
                y2,
                b_pml,
            )
            Gamma_1, Gamma_2, Gamma_3 = damping.matrices_3D(sigma_x, sigma_y, sigma_z)

    # typical CG in N-d
    else:
        u = TrialFunction(V)
        v = TestFunction(V)

        u_nm1 = Function(V)
        u_n = Function(V)
        u_np1 = Function(V)

    if output:
        outfile = helpers.create_output_file("adjoint.pvd", comm, 0)

    t = 0.0

    # -------------------------------------------------------
    m1 = ((u - 2.0 * u_n + u_nm1) / Constant(dt ** 2)) * v * dx(rule=qr_x)
    a = c * c * dot(grad(u_n), grad(v)) * dx(rule=qr_x)  # explicit

    nf = 0
    if model["BCs"]["outer_bc"] == "non-reflective":
        nf = c * ((u_n - u_nm1) / dt) * v * ds(rule=qr_s)

    FF = m1 + a + nf

    if PML:
        X = Function(W)
        B = Function(W)

        if dim == 2:
            pml1 = (sigma_x + sigma_z) * ((u - u_n) / dt) * v * dx(rule=qr_x)
            pml2 = sigma_x * sigma_z * u_n * v * dx(rule=qr_x)
            pml3 = c * c * inner(grad(v), dot(Gamma_2, pp_n)) * dx(rule=qr_x)

            FF += pml1 + pml2 + pml3
            # -------------------------------------------------------
            mm1 = (dot((pp - pp_n), qq) / Constant(dt)) * dx(rule=qr_x)
            mm2 = inner(dot(Gamma_1, pp_n), qq) * dx(rule=qr_x)
            dd = inner(qq, grad(u_n)) * dx(rule=qr_x)

            FF += mm1 + mm2 + dd
        elif dim == 3:
            pml1 = (sigma_x + sigma_y + sigma_z) * ((u - u_n) / dt) * v * dx(rule=qr_x)
            uuu1 = (-v * psi_n) * dx(rule=qr_x)
            pml2 = (
                (sigma_x * sigma_y + sigma_x * sigma_z + sigma_y * sigma_z)
                * u_n
                * v
                * dx(rule=qr_x)
            )
            dd1 = c * c * inner(grad(v), dot(Gamma_2, pp_n)) * dx(rule=qr_x)

            FF += pml1 + pml2 + dd1 + uuu1
            # -------------------------------------------------------
            mm1 = (dot((pp - pp_n), qq) / dt) * dx(rule=qr_x)
            mm2 = inner(dot(Gamma_1, pp_n), qq) * dx(rule=qr_x)
            pml4 = inner(qq, grad(u_n)) * dx(rule=qr_x)

            FF += mm1 + mm2 + pml4
            # -------------------------------------------------------
            pml3 = (sigma_x * sigma_y * sigma_z) * phi * u_n * dx(rule=qr_x)
            mmm1 = (dot((psi - psi_n), phi) / dt) * dx(rule=qr_x)
            mmm2 = -c * c * inner(grad(phi), dot(Gamma_3, pp_n)) * dx(rule=qr_x)

            FF += mmm1 + mmm2 + pml3
    else:
        X = Function(V)
        B = Function(V)

    lhs_ = lhs(FF)
    rhs_ = rhs(FF)

    A = assemble(lhs_, mat_type="matfree")
    solver = LinearSolver(A, solver_parameters=params)

    # Define gradient problem
    m_u = TrialFunction(V)
    m_v = TestFunction(V)
    mgrad = m_u * m_v * dx(rule=qr_x)

    uuadj = Function(V)  # auxiliarly function for the gradient compt.
    uufor = Function(V)  # auxiliarly function for the gradient compt.

    ffG = 2.0 * c * dot(grad(uuadj), grad(uufor)) * m_v * dx(rule=qr_x)

    G = mgrad - ffG
    lhsG, rhsG = lhs(G), rhs(G)

    gradi = Function(V)
    grad_prob = LinearVariationalProblem(lhsG, rhsG, gradi)
    
    if method == "KMV":
        grad_solver = LinearVariationalSolver(
            grad_prob,
            solver_parameters={
                "ksp_type": "preonly",
                "pc_type": "jacobi",
                "mat_type": "matfree",
            },
        )
    elif method == "CG":
        grad_solver = LinearVariationalSolver(
            grad_prob,
            solver_parameters={
                "mat_type": "matfree",
            },
        )

    assembly_callable = create_assembly_callable(rhs_, tensor=B)

    rhs_forcing = Function(V)  # forcing term
    if save_adjoint:
        adjoint = [Function(V, name="adjoint_pressure") for t in range(nt)]
    for step in range(nt - 1, -1, -1):
        t = step * float(dt)
        rhs_forcing.assign(0.0)
        # Solver - main equation - (I)
        # B = assemble(rhs_, tensor=B)
        assembly_callable()

        f = receivers.apply_receivers_as_source(rhs_forcing, residual, step)
        # add forcing term to solve scalar pressure
        B0 = B.sub(0)
        B0 += f

        # AX=B --> solve for X = B/Aˆ-1
        solver.solve(X, B)
        if PML:
            if dim == 2:
                u_np1, pp_np1 = X.split()
            elif dim == 3:
                u_np1, psi_np1, pp_np1 = X.split()

                psi_nm1.assign(psi_n)
                psi_n  .assign(psi_np1)

            pp_nm1.assign(pp_n)
            pp_n  .assign(pp_np1)
        else:
            u_np1.assign(X)

        # only compute for snaps that were saved
        if step % fspool == 0:
            # compute the gradient increment
            uuadj.assign(u_np1)
            uufor.assign(guess.pop())

            grad_solver.solve()
            dJ += gradi

        u_nm1.assign(u_n)
        u_n.assign(u_np1)

        if step % nspool == 0:
            if output:
                outfile.write(u_n, time=t)
            if save_adjoint:
                adjoint.append(u_n)
            helpers.display_progress(comm, t)

    if save_adjoint:
        return dJ, adjoint
    else:
        return dJ
예제 #24
0
    def initialize(self, pc):

        from firedrake import TestFunction, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        from firedrake.interpolation import Interpolator
        from firedrake.solving_utils import _SNESContext
        from firedrake.matrix_free.operators import ImplicitMatrixContext

        _, P = pc.getOperators()
        appctx = self.get_appctx(pc)
        fcp = appctx.get("form_compiler_parameters")

        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")

        ctx = dmhooks.get_appctx(pc.getDM())
        if ctx is None:
            raise ValueError("No context found.")
        if not isinstance(ctx, _SNESContext):
            raise ValueError("Don't know how to get form from %r", ctx)

        prefix = pc.getOptionsPrefix()
        options_prefix = prefix + self._prefix
        opts = PETSc.Options()

        # Handle the fine operator if type is python
        if P.getType() == "python":
            ictx = P.getPythonContext()
            if ictx is None:
                raise ValueError("No context found on matrix")
            if not isinstance(ictx, ImplicitMatrixContext):
                raise ValueError("Don't know how to get form from %r", ictx)

            fine_operator = ictx.a
            fine_bcs = ictx.row_bcs
            if fine_bcs != ictx.col_bcs:
                raise NotImplementedError("Row and column bcs must match")

            fine_mat_type = opts.getString(options_prefix + "mat_type",
                                           parameters["default_matrix_type"])
            self.fine_op = allocate_matrix(fine_operator,
                                           bcs=fine_bcs,
                                           form_compiler_parameters=fcp,
                                           mat_type=fine_mat_type,
                                           options_prefix=options_prefix)
            self._assemble_fine_op = create_assembly_callable(
                fine_operator,
                tensor=self.fine_op,
                bcs=fine_bcs,
                form_compiler_parameters=fcp,
                mat_type=fine_mat_type)
            self._assemble_fine_op()
            fine_petscmat = self.fine_op.petscmat
        else:
            fine_petscmat = P

        # Transfer fine operator null space
        fine_petscmat.setNullSpace(P.getNullSpace())
        fine_transpose_nullspace = P.getTransposeNullSpace()
        if fine_transpose_nullspace.handle != 0:
            fine_petscmat.setTransposeNullSpace(fine_transpose_nullspace)

        # Handle the coarse operator
        coarse_options_prefix = options_prefix + "mg_coarse"
        coarse_mat_type = opts.getString(coarse_options_prefix + "mat_type",
                                         parameters["default_matrix_type"])

        get_coarse_space = appctx.get("get_coarse_space", None)
        if not get_coarse_space:
            raise ValueError(
                "Need to provide a callback which provides the coarse space.")
        coarse_space = get_coarse_space()

        get_coarse_operator = appctx.get("get_coarse_operator", None)
        if not get_coarse_operator:
            raise ValueError(
                "Need to provide a callback which provides the coarse operator."
            )
        coarse_operator = get_coarse_operator()

        coarse_space_bcs = appctx.get("coarse_space_bcs", None)

        # These should be callbacks which return the relevant nullspaces
        get_coarse_nullspace = appctx.get("get_coarse_op_nullspace", None)
        get_coarse_transpose_nullspace = appctx.get(
            "get_coarse_op_transpose_nullspace", None)

        self.coarse_op = allocate_matrix(coarse_operator,
                                         bcs=coarse_space_bcs,
                                         form_compiler_parameters=fcp,
                                         mat_type=coarse_mat_type,
                                         options_prefix=coarse_options_prefix)
        self._assemble_coarse_op = create_assembly_callable(
            coarse_operator,
            tensor=self.coarse_op,
            bcs=coarse_space_bcs,
            form_compiler_parameters=fcp)
        self._assemble_coarse_op()
        coarse_opmat = self.coarse_op.petscmat

        # Set nullspace if provided
        if get_coarse_nullspace:
            nsp = get_coarse_nullspace()
            coarse_opmat.setNullSpace(nsp.nullspace(comm=pc.comm))

        if get_coarse_transpose_nullspace:
            tnsp = get_coarse_transpose_nullspace()
            coarse_opmat.setTransposeNullSpace(tnsp.nullspace(comm=pc.comm))

        interp_petscmat = appctx.get("interpolation_matrix", None)
        if interp_petscmat is None:
            # Create interpolation matrix from coarse space to fine space
            fine_space = ctx.J.arguments()[0].function_space()
            interpolator = Interpolator(TestFunction(coarse_space), fine_space)
            interpolation_matrix = interpolator.callable()
            interp_petscmat = interpolation_matrix.handle

        # We set up a PCMG object that uses the constructed interpolation
        # matrix to generate the restriction/prolongation operators.
        # This is a two-level multigrid preconditioner.
        pcmg = PETSc.PC().create(comm=pc.comm)
        pcmg.incrementTabLevel(1, parent=pc)

        pcmg.setType(pc.Type.MG)
        pcmg.setOptionsPrefix(options_prefix)
        pcmg.setMGLevels(2)
        pcmg.setMGCycleType(pc.MGCycleType.V)
        pcmg.setMGInterpolation(1, interp_petscmat)
        pcmg.setOperators(A=fine_petscmat, P=fine_petscmat)

        # Create new appctx
        self._ctx_ref = self.new_snes_ctx(pc, coarse_operator,
                                          coarse_space_bcs, coarse_mat_type,
                                          fcp)

        coarse_solver = pcmg.getMGCoarseSolve()
        coarse_solver.setOperators(A=coarse_opmat, P=coarse_opmat)
        # coarse space dm
        coarse_dm = coarse_space.dm
        coarse_solver.setDM(coarse_dm)
        coarse_solver.setDMActive(False)
        pcmg.setDM(coarse_dm)
        pcmg.setFromOptions()
        self.pc = pcmg
        self._dm = coarse_dm

        with dmhooks.add_hooks(coarse_dm,
                               self,
                               appctx=self._ctx_ref,
                               save=False):
            coarse_solver.setFromOptions()
예제 #25
0
 def _rhs(self):
     from firedrake.assemble import create_assembly_callable
     u = function.Function(self.trial_space)
     b = function.Function(self.test_space)
     expr = -action(self.A.a, u)
     return u, create_assembly_callable(expr, tensor=b), b
예제 #26
0
 def assembler(self):
     from firedrake.assemble import create_assembly_callable
     return create_assembly_callable(self.rhs_form, tensor=self.residual,
                                     form_compiler_parameters=self.form_compiler_parameters)
예제 #27
0
    def initialize(self, pc):
        from firedrake import TrialFunction, TestFunction, dx, \
            assemble, inner, grad, split, Constant, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        prefix = pc.getOptionsPrefix() + "pcd_"

        # we assume P has things stuffed inside of it
        _, P = pc.getOperators()
        context = P.getPythonContext()

        test, trial = context.a.arguments()
        if test.function_space() != trial.function_space():
            raise ValueError("Pressure space test and trial space differ")

        Q = test.function_space()

        p = TrialFunction(Q)
        q = TestFunction(Q)

        mass = p*q*dx

        # Regularisation to avoid having to think about nullspaces.
        stiffness = inner(grad(p), grad(q))*dx + Constant(1e-6)*p*q*dx

        opts = PETSc.Options()
        # we're inverting Mp and Kp, so default them to assembled.
        # Fp only needs its action, so default it to mat-free.
        # These can of course be overridden.
        # only Fp is referred to in update, so that's the only
        # one we stash.
        default = parameters["default_matrix_type"]
        Mp_mat_type = opts.getString(prefix+"Mp_mat_type", default)
        Kp_mat_type = opts.getString(prefix+"Kp_mat_type", default)
        self.Fp_mat_type = opts.getString(prefix+"Fp_mat_type", "matfree")

        Mp = assemble(mass, form_compiler_parameters=context.fc_params,
                      mat_type=Mp_mat_type)
        Kp = assemble(stiffness, form_compiler_parameters=context.fc_params,
                      mat_type=Kp_mat_type)

        Mp.force_evaluation()
        Kp.force_evaluation()

        # FIXME: Should we transfer nullspaces over.  I think not.

        Mksp = PETSc.KSP().create()
        Mksp.setOptionsPrefix(prefix + "Mp_")
        Mksp.setOperators(Mp.petscmat)
        Mksp.setUp()
        Mksp.setFromOptions()
        self.Mksp = Mksp

        Kksp = PETSc.KSP().create()
        Kksp.setOptionsPrefix(prefix + "Kp_")
        Kksp.setOperators(Kp.petscmat)
        Kksp.setUp()
        Kksp.setFromOptions()
        self.Kksp = Kksp

        state = context.appctx["state"]

        Re = context.appctx.get("Re", 1.0)

        velid = context.appctx["velocity_space"]

        u0 = split(state)[velid]
        fp = 1.0/Re * inner(grad(p), grad(q))*dx + inner(u0, grad(p))*q*dx

        self.Re = Re
        self.Fp = allocate_matrix(fp, form_compiler_parameters=context.fc_params,
                                  mat_type=self.Fp_mat_type)
        self._assemble_Fp = create_assembly_callable(fp, tensor=self.Fp,
                                                     form_compiler_parameters=context.fc_params,
                                                     mat_type=self.Fp_mat_type)
        self._assemble_Fp()
        self.Fp.force_evaluation()
        Fpmat = self.Fp.petscmat
        self.workspace = [Fpmat.createVecLeft() for i in (0, 1)]
예제 #28
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError("The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        shapes = (V[self.vidx].finat_element.space_dimension(),
                  np.prod(V[self.vidx].shape))
        domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes
        instructions = """
        for i, j
            w[i,j] = w[i,j] + 1
        end
        """
        self.weight = Function(V[self.vidx])
        par_loop((domain, instructions), ufl.dx, {"w": (self.weight, INC)},
                 is_loopy_kernel=True)

        instructions = """
        for i, j
            vec_out[i,j] = vec_out[i,j] + vec_in[i,j]/w[i,j]
        end
        """
        self.average_kernel = (domain, instructions)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d),
                   trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_h
                     + gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError("Dirichlet conditions for scalar variable not supported. Use a weak bc")
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError("Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(as_tuple(subdom, int))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {"top", "bottom"}
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in sorted(extruded_neumann_subdomains):
                    measures.append({"top": ufl.ds_t, "bottom": ufl.ds_b}[subdomain])
                trace_subdomains.extend(sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
                markers = [int(x) for x in mesh.exterior_facets.unique_markers]
                dirichlet_subdomains = set(markers) - neumann_subdomains
                trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand*measure

            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), subdomain) for subdomain in trace_subdomains]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp, bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(schur_comp,
                                                    tensor=self.S,
                                                    bcs=trace_bcs,
                                                    form_compiler_parameters=self.ctx.fc_params,
                                                    mat_type=mat_type)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(TraceSpace)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)
예제 #29
0
    def initialize(self, pc):
        from firedrake.assemble import allocate_matrix, create_assembly_callable

        _, P = pc.getOperators()

        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")
        opc = pc
        appctx = self.get_appctx(pc)
        fcp = appctx.get("form_compiler_parameters")

        V = get_function_space(pc.getDM())
        if len(V) == 1:
            V = FunctionSpace(V.mesh(), V.ufl_element())
        else:
            V = MixedFunctionSpace([V_ for V_ in V])
        test = TestFunction(V)
        trial = TrialFunction(V)

        if P.type == "python":
            context = P.getPythonContext()
            # It only makes sense to preconditioner/invert a diagonal
            # block in general.  That's all we're going to allow.
            if not context.on_diag:
                raise ValueError("Only makes sense to invert diagonal block")

        prefix = pc.getOptionsPrefix()
        options_prefix = prefix + self._prefix

        mat_type = PETSc.Options().getString(options_prefix + "mat_type", "aij")

        (a, bcs) = self.form(pc, test, trial)

        self.P = allocate_matrix(a, bcs=bcs,
                                 form_compiler_parameters=fcp,
                                 mat_type=mat_type,
                                 options_prefix=options_prefix)
        self._assemble_P = create_assembly_callable(a, tensor=self.P,
                                                    bcs=bcs,
                                                    form_compiler_parameters=fcp,
                                                    mat_type=mat_type)
        self._assemble_P()
        self.P.force_evaluation()

        # Transfer nullspace over
        Pmat = self.P.petscmat
        Pmat.setNullSpace(P.getNullSpace())
        tnullsp = P.getTransposeNullSpace()
        if tnullsp.handle != 0:
            Pmat.setTransposeNullSpace(tnullsp)

        # Internally, we just set up a PC object that the user can configure
        # however from the PETSc command line.  Since PC allows the user to specify
        # a KSP, we can do iterative by -assembled_pc_type ksp.
        pc = PETSc.PC().create(comm=opc.comm)
        pc.incrementTabLevel(1, parent=opc)

        # We set a DM and an appropriate SNESContext on the constructed PC so one
        # can do e.g. multigrid or patch solves.
        from firedrake.variational_solver import NonlinearVariationalProblem
        from firedrake.solving_utils import _SNESContext
        dm = opc.getDM()
        octx = get_appctx(dm)
        oproblem = octx._problem
        nproblem = NonlinearVariationalProblem(oproblem.F, oproblem.u, bcs, J=a, form_compiler_parameters=fcp)
        nctx = _SNESContext(nproblem, mat_type, mat_type, octx.appctx)
        push_appctx(dm, nctx)
        self._ctx_ref = nctx
        pc.setDM(dm)

        pc.setOptionsPrefix(options_prefix)
        pc.setOperators(Pmat, Pmat)
        pc.setFromOptions()
        pc.setUp()
        self.pc = pc
        pop_appctx(dm)
예제 #30
0
파일: forward.py 프로젝트: krober10nd/spyro
def forward(
    model,
    mesh,
    comm,
    c,
    excitations,
    wavelet,
    receivers,
    source_num=0,
    output=False,
):
    """Secord-order in time fully-explicit scheme
    with implementation of a Perfectly Matched Layer (PML) using
    CG FEM with or without higher order mass lumping (KMV type elements).

    Parameters
    ----------
    model: Python `dictionary`
        Contains model options and parameters
    mesh: Firedrake.mesh object
        The 2D/3D triangular mesh
    comm: Firedrake.ensemble_communicator
        The MPI communicator for parallelism
       c: Firedrake.Function
        The velocity model interpolated onto the mesh.
    excitations: A list Firedrake.Functions
    wavelet: array-like
        Time series data that's injected at the source location.
    receivers: A :class:`spyro.Receivers` object.
        Contains the receiver locations and sparse interpolation methods.
    source_num: `int`, optional
        The source number you wish to simulate
    output: `boolean`, optional
        Whether or not to write results to pvd files.

    Returns
    -------
    usol: list of Firedrake.Functions
        The full field solution at `fspool` timesteps
    usol_recv: array-like
        The solution interpolated to the receivers at all timesteps

    """

    method = model["opts"]["method"]
    degree = model["opts"]["degree"]
    dim = model["opts"]["dimension"]
    dt = model["timeaxis"]["dt"]
    tf = model["timeaxis"]["tf"]
    nspool = model["timeaxis"]["nspool"]
    fspool = model["timeaxis"]["fspool"]
    PML = model["BCs"]["status"]
    excitations.current_source = source_num
    if PML:
        Lx = model["mesh"]["Lx"]
        Lz = model["mesh"]["Lz"]
        lx = model["BCs"]["lx"]
        lz = model["BCs"]["lz"]
        x1 = 0.0
        x2 = Lx
        a_pml = lx
        z1 = 0.0
        z2 = -Lz
        c_pml = lz
        if dim == 3:
            Ly = model["mesh"]["Ly"]
            ly = model["BCs"]["ly"]
            y1 = 0.0
            y2 = Ly
            b_pml = ly

    nt = int(tf / dt)  # number of timesteps

    if method == "KMV":
        params = {"ksp_type": "preonly", "pc_type": "jacobi"}
    elif (method == "CG" and mesh.ufl_cell() != quadrilateral
          and mesh.ufl_cell() != hexahedron):
        params = {"ksp_type": "cg", "pc_type": "jacobi"}
    elif method == "CG" and (mesh.ufl_cell() == quadrilateral
                             or mesh.ufl_cell() == hexahedron):
        params = {"ksp_type": "preonly", "pc_type": "jacobi"}
    else:
        raise ValueError("method is not yet supported")

    element = space.FE_method(mesh, method, degree)

    V = FunctionSpace(mesh, element)

    qr_x, qr_s, _ = quadrature.quadrature_rules(V)

    if dim == 2:
        z, x = SpatialCoordinate(mesh)
    elif dim == 3:
        z, x, y = SpatialCoordinate(mesh)

    if PML:
        Z = VectorFunctionSpace(V.ufl_domain(), V.ufl_element())
        if dim == 2:
            W = V * Z
            u, pp = TrialFunctions(W)
            v, qq = TestFunctions(W)

            u_np1, pp_np1 = Function(W).split()
            u_n, pp_n = Function(W).split()
            u_nm1, pp_nm1 = Function(W).split()

        elif dim == 3:
            W = V * V * Z
            u, psi, pp = TrialFunctions(W)
            v, phi, qq = TestFunctions(W)

            u_np1, psi_np1, pp_np1 = Function(W).split()
            u_n, psi_n, pp_n = Function(W).split()
            u_nm1, psi_nm1, pp_nm1 = Function(W).split()

        if dim == 2:
            sigma_x, sigma_z = damping.functions(model, V, dim, x, x1, x2,
                                                 a_pml, z, z1, z2, c_pml)
            Gamma_1, Gamma_2 = damping.matrices_2D(sigma_z, sigma_x)
            pml1 = ((sigma_x + sigma_z) * ((u - u_nm1) / Constant(2.0 * dt)) *
                    v * dx(rule=qr_x))
        elif dim == 3:

            sigma_x, sigma_y, sigma_z = damping.functions(
                model,
                V,
                dim,
                x,
                x1,
                x2,
                a_pml,
                z,
                z1,
                z2,
                c_pml,
                y,
                y1,
                y2,
                b_pml,
            )
            Gamma_1, Gamma_2, Gamma_3 = damping.matrices_3D(
                sigma_x, sigma_y, sigma_z)

    # typical CG FEM in 2d/3d
    else:
        u = TrialFunction(V)
        v = TestFunction(V)

        u_nm1 = Function(V)
        u_n = Function(V)
        u_np1 = Function(V)

    if output:
        outfile = helpers.create_output_file("forward.pvd", comm, source_num)

    t = 0.0

    # -------------------------------------------------------
    m1 = ((u - 2.0 * u_n + u_nm1) / Constant(dt**2)) * v * dx(rule=qr_x)
    a = c * c * dot(grad(u_n), grad(v)) * dx(rule=qr_x)  # explicit

    nf = 0
    if model["BCs"]["outer_bc"] == "non-reflective":
        nf = c * ((u_n - u_nm1) / dt) * v * ds(rule=qr_s)

    FF = m1 + a + nf

    if PML:
        X = Function(W)
        B = Function(W)

        if dim == 2:
            pml2 = sigma_x * sigma_z * u_n * v * dx(rule=qr_x)
            pml3 = inner(pp_n, grad(v)) * dx(rule=qr_x)
            FF += pml1 + pml2 + pml3
            # -------------------------------------------------------
            mm1 = (dot((pp - pp_n), qq) / Constant(dt)) * dx(rule=qr_x)
            mm2 = inner(dot(Gamma_1, pp_n), qq) * dx(rule=qr_x)
            dd = c * c * inner(grad(u_n), dot(Gamma_2, qq)) * dx(rule=qr_x)
            FF += mm1 + mm2 + dd
        elif dim == 3:
            pml1 = ((sigma_x + sigma_y + sigma_z) *
                    ((u - u_n) / Constant(dt)) * v * dx(rule=qr_x))
            pml2 = (
                (sigma_x * sigma_y + sigma_x * sigma_z + sigma_y * sigma_z) *
                u_n * v * dx(rule=qr_x))
            pml3 = (sigma_x * sigma_y * sigma_z) * psi_n * v * dx(rule=qr_x)
            pml4 = inner(pp_n, grad(v)) * dx(rule=qr_x)

            FF += pml1 + pml2 + pml3 + pml4
            # -------------------------------------------------------
            mm1 = (dot((pp - pp_n), qq) / Constant(dt)) * dx(rule=qr_x)
            mm2 = inner(dot(Gamma_1, pp_n), qq) * dx(rule=qr_x)
            dd1 = c * c * inner(grad(u_n), dot(Gamma_2, qq)) * dx(rule=qr_x)
            dd2 = -c * c * inner(grad(psi_n), dot(Gamma_3, qq)) * dx(rule=qr_x)

            FF += mm1 + mm2 + dd1 + dd2
            # -------------------------------------------------------
            mmm1 = (dot((psi - psi_n), phi) / Constant(dt)) * dx(rule=qr_x)
            uuu1 = (-u_n * phi) * dx(rule=qr_x)

            FF += mmm1 + uuu1
    else:
        X = Function(V)
        B = Function(V)

    lhs_ = lhs(FF)
    rhs_ = rhs(FF)

    A = assemble(lhs_, mat_type="matfree")
    solver = LinearSolver(A, solver_parameters=params)

    usol = [Function(V, name="pressure") for t in range(nt) if t % fspool == 0]
    usol_recv = []
    save_step = 0

    assembly_callable = create_assembly_callable(rhs_, tensor=B)

    rhs_forcing = Function(V)

    for step in range(nt):
        rhs_forcing.assign(0.0)
        assembly_callable()
        f = excitations.apply_source(rhs_forcing, wavelet[step])
        B0 = B.sub(0)
        B0 += f
        solver.solve(X, B)
        if PML:
            if dim == 2:
                u_np1, pp_np1 = X.split()
            elif dim == 3:
                u_np1, psi_np1, pp_np1 = X.split()

                psi_nm1.assign(psi_n)
                psi_n.assign(psi_np1)

            pp_nm1.assign(pp_n)
            pp_n.assign(pp_np1)
        else:
            u_np1.assign(X)

        usol_recv.append(receivers.interpolate(
            u_np1.dat.data_ro_with_halos[:]))

        if step % fspool == 0:
            usol[save_step].assign(u_np1)
            save_step += 1

        if step % nspool == 0:
            assert (
                norm(u_n) < 1
            ), "Numerical instability. Try reducing dt or building the mesh differently"
            if output:
                outfile.write(u_n, time=t, name="Pressure")
            if t > 0:
                helpers.display_progress(comm, t)

        u_nm1.assign(u_n)
        u_n.assign(u_np1)

        t = step * float(dt)

    usol_recv = helpers.fill(usol_recv, receivers.is_local, nt,
                             receivers.num_receivers)
    usol_recv = utils.communicate(usol_recv, comm)

    return usol, usol_recv
예제 #31
0
 def _rhs(self):
     from firedrake.assemble import create_assembly_callable
     u = function.Function(self.trial_space)
     b = function.Function(self.test_space)
     expr = -action(self.A.a, u)
     return u, create_assembly_callable(expr, tensor=b), b
예제 #32
0
    def __init__(self, problem, mat_type, pmat_type, appctx=None, pre_jacobian_callback=None, pre_function_callback=None):
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        if pmat_type is None:
            pmat_type = mat_type
        self.mat_type = mat_type
        self.pmat_type = pmat_type

        matfree = mat_type == 'matfree'
        pmatfree = pmat_type == 'matfree'

        self._problem = problem
        self._pre_jacobian_callback = pre_jacobian_callback
        self._pre_function_callback = pre_function_callback

        fcp = problem.form_compiler_parameters
        # Function to hold current guess
        self._x = problem.u

        if appctx is None:
            appctx = {}

        if matfree or pmatfree:
            # A split context will already get the full state.
            # TODO, a better way of doing this.
            # Now we don't have a temporary state inside the snes
            # context we could just require the user to pass in the
            # full state on the outside.
            appctx.setdefault("state", self._x)

        self.appctx = appctx
        self.matfree = matfree
        self.pmatfree = pmatfree
        self.F = problem.F
        self.J = problem.J

        self._jac = allocate_matrix(self.J, bcs=problem.bcs,
                                    form_compiler_parameters=fcp,
                                    mat_type=mat_type,
                                    appctx=appctx)
        self._assemble_jac = create_assembly_callable(self.J,
                                                      tensor=self._jac,
                                                      bcs=problem.bcs,
                                                      form_compiler_parameters=fcp,
                                                      mat_type=mat_type)

        self.is_mixed = self._jac.block_shape != (1, 1)

        if mat_type != pmat_type or problem.Jp is not None:
            # Need separate pmat if either Jp is different or we want
            # a different pmat type to the mat type.
            if problem.Jp is None:
                self.Jp = self.J
            else:
                self.Jp = problem.Jp
            self._pjac = allocate_matrix(self.Jp, bcs=problem.bcs,
                                         form_compiler_parameters=fcp,
                                         mat_type=pmat_type,
                                         appctx=appctx)

            self._assemble_pjac = create_assembly_callable(self.Jp,
                                                           tensor=self._pjac,
                                                           bcs=problem.bcs,
                                                           form_compiler_parameters=fcp,
                                                           mat_type=pmat_type)
        else:
            # pmat_type == mat_type and Jp is None
            self.Jp = None
            self._pjac = self._jac

        self._F = function.Function(self.F.arguments()[0].function_space())
        self._assemble_residual = create_assembly_callable(self.F,
                                                           tensor=self._F,
                                                           form_compiler_parameters=fcp)

        self._jacobian_assembled = False
        self._splits = {}
        self._coarse = None
        self._fine = None
예제 #33
0
    def initialize(self, pc):
        from firedrake import TrialFunction, TestFunction, dx, \
            assemble, inner, grad, split, Constant, parameters
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        if pc.getType() != "python":
            raise ValueError("Expecting PC type python")
        prefix = pc.getOptionsPrefix() + "pcd_"

        # we assume P has things stuffed inside of it
        _, P = pc.getOperators()
        context = P.getPythonContext()

        test, trial = context.a.arguments()
        if test.function_space() != trial.function_space():
            raise ValueError("Pressure space test and trial space differ")

        Q = test.function_space()

        p = TrialFunction(Q)
        q = TestFunction(Q)

        mass = p * q * dx

        # Regularisation to avoid having to think about nullspaces.
        stiffness = inner(grad(p), grad(q)) * dx + Constant(1e-6) * p * q * dx

        opts = PETSc.Options()
        # we're inverting Mp and Kp, so default them to assembled.
        # Fp only needs its action, so default it to mat-free.
        # These can of course be overridden.
        # only Fp is referred to in update, so that's the only
        # one we stash.
        default = parameters["default_matrix_type"]
        Mp_mat_type = opts.getString(prefix + "Mp_mat_type", default)
        Kp_mat_type = opts.getString(prefix + "Kp_mat_type", default)
        self.Fp_mat_type = opts.getString(prefix + "Fp_mat_type", "matfree")

        Mp = assemble(mass,
                      form_compiler_parameters=context.fc_params,
                      mat_type=Mp_mat_type,
                      options_prefix=prefix + "Mp_")
        Kp = assemble(stiffness,
                      form_compiler_parameters=context.fc_params,
                      mat_type=Kp_mat_type,
                      options_prefix=prefix + "Kp_")

        Mp.force_evaluation()
        Kp.force_evaluation()

        # FIXME: Should we transfer nullspaces over.  I think not.

        Mksp = PETSc.KSP().create(comm=pc.comm)
        Mksp.incrementTabLevel(1, parent=pc)
        Mksp.setOptionsPrefix(prefix + "Mp_")
        Mksp.setOperators(Mp.petscmat)
        Mksp.setUp()
        Mksp.setFromOptions()
        self.Mksp = Mksp

        Kksp = PETSc.KSP().create(comm=pc.comm)
        Kksp.incrementTabLevel(1, parent=pc)
        Kksp.setOptionsPrefix(prefix + "Kp_")
        Kksp.setOperators(Kp.petscmat)
        Kksp.setUp()
        Kksp.setFromOptions()
        self.Kksp = Kksp

        state = context.appctx["state"]

        Re = context.appctx.get("Re", 1.0)

        velid = context.appctx["velocity_space"]

        u0 = split(state)[velid]
        fp = 1.0 / Re * inner(grad(p), grad(q)) * dx + inner(u0,
                                                             grad(p)) * q * dx

        self.Re = Re
        self.Fp = allocate_matrix(fp,
                                  form_compiler_parameters=context.fc_params,
                                  mat_type=self.Fp_mat_type,
                                  options_prefix=prefix + "Fp_")
        self._assemble_Fp = create_assembly_callable(
            fp,
            tensor=self.Fp,
            form_compiler_parameters=context.fc_params,
            mat_type=self.Fp_mat_type)
        self._assemble_Fp()
        self.Fp.force_evaluation()
        Fpmat = self.Fp.petscmat
        self.workspace = [Fpmat.createVecLeft() for i in (0, 1)]
예제 #34
0
    def __init__(self,
                 problem,
                 mat_type,
                 pmat_type,
                 appctx=None,
                 pre_jacobian_callback=None,
                 pre_function_callback=None,
                 options_prefix=None):
        from firedrake.assemble import allocate_matrix, create_assembly_callable
        if pmat_type is None:
            pmat_type = mat_type
        self.mat_type = mat_type
        self.pmat_type = pmat_type

        matfree = mat_type == 'matfree'
        pmatfree = pmat_type == 'matfree'

        self._problem = problem
        self._pre_jacobian_callback = pre_jacobian_callback
        self._pre_function_callback = pre_function_callback

        fcp = problem.form_compiler_parameters
        # Function to hold current guess
        self._x = problem.u

        if appctx is None:
            appctx = {}

        if matfree or pmatfree:
            # A split context will already get the full state.
            # TODO, a better way of doing this.
            # Now we don't have a temporary state inside the snes
            # context we could just require the user to pass in the
            # full state on the outside.
            appctx.setdefault("state", self._x)

        self.appctx = appctx
        self.matfree = matfree
        self.pmatfree = pmatfree
        self.F = problem.F
        self.J = problem.J

        self._jac = allocate_matrix(self.J,
                                    bcs=problem.bcs,
                                    form_compiler_parameters=fcp,
                                    mat_type=mat_type,
                                    appctx=appctx,
                                    options_prefix=options_prefix)
        self._assemble_jac = create_assembly_callable(
            self.J,
            tensor=self._jac,
            bcs=problem.bcs,
            form_compiler_parameters=fcp,
            mat_type=mat_type)

        self.is_mixed = self._jac.block_shape != (1, 1)

        if mat_type != pmat_type or problem.Jp is not None:
            # Need separate pmat if either Jp is different or we want
            # a different pmat type to the mat type.
            if problem.Jp is None:
                self.Jp = self.J
            else:
                self.Jp = problem.Jp
            self._pjac = allocate_matrix(self.Jp,
                                         bcs=problem.bcs,
                                         form_compiler_parameters=fcp,
                                         mat_type=pmat_type,
                                         appctx=appctx,
                                         options_prefix=options_prefix)

            self._assemble_pjac = create_assembly_callable(
                self.Jp,
                tensor=self._pjac,
                bcs=problem.bcs,
                form_compiler_parameters=fcp,
                mat_type=pmat_type)
        else:
            # pmat_type == mat_type and Jp is None
            self.Jp = None
            self._pjac = self._jac

        self._F = function.Function(self.F.arguments()[0].function_space())
        self._assemble_residual = create_assembly_callable(
            self.F, tensor=self._F, form_compiler_parameters=fcp)

        self._jacobian_assembled = False
        self._splits = {}
        self._coarse = None
        self._fine = None
예제 #35
0
    def initialize(self, pc):
        """ Set up the problem context. Takes the original
        mixed problem and transforms it into the equivalent
        hybrid-mixed system.

        A KSP object is created for the Lagrange multipliers
        on the top/bottom faces of the mesh cells.
        """

        from firedrake import (FunctionSpace, Function, Constant,
                               FiniteElement, TensorProductElement,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC, interval, MixedElement,
                               BrokenElement)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace
        from ufl.cell import TensorProductCell

        # Extract PC context
        prefix = pc.getOptionsPrefix() + "vert_hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError(
                "The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        # Magically determine which spaces are vector and scalar valued
        for i, Vi in enumerate(V):

            # Vector-valued spaces will have a non-empty value_shape
            if Vi.ufl_element().value_shape():
                self.vidx = i
            else:
                self.pidx = i

        Vv = V[self.vidx]
        Vp = V[self.pidx]

        # Create the space of approximate traces in the vertical.
        # NOTE: Technically a hack since the resulting space is technically
        # defined in cell interiors, however the degrees of freedom will only
        # be geometrically defined on edges. Arguments will only be used in
        # surface integrals
        deg, _ = Vv.ufl_element().degree()

        # Assumes a tensor product cell (quads, triangular-prisms, cubes)
        if not isinstance(Vp.ufl_element().cell(), TensorProductCell):
            raise NotImplementedError(
                "Currently only implemented for tensor product discretizations"
            )

        # Only want the horizontal cell
        cell, _ = Vp.ufl_element().cell()._cells

        DG = FiniteElement("DG", cell, deg)
        CG = FiniteElement("CG", interval, 1)
        Vv_tr_element = TensorProductElement(DG, CG)
        Vv_tr = FunctionSpace(mesh, Vv_tr_element)

        # Break the spaces
        broken_elements = MixedElement(
            [BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up relevant functions
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(Vv_tr)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        # Set up transfer kernels to and from the broken velocity space
        # NOTE: Since this snippet of code is used in a couple places in
        # in Gusto, might be worth creating a utility function that is
        # is importable and just called where needed.
        shapes = {
            "i": Vv.finat_element.space_dimension(),
            "j": np.prod(Vv.shape, dtype=int)
        }
        weight_kernel = """
        for (int i=0; i<{i}; ++i)
            for (int j=0; j<{j}; ++j)
                w[i*{j} + j] += 1.0;
        """.format(**shapes)

        self.weight = Function(Vv)
        par_loop(weight_kernel, dx, {"w": (self.weight, INC)})

        # Averaging kernel
        self.average_kernel = """
        for (int i=0; i<{i}; ++i)
            for (int j=0; j<{j}; ++j)
                vec_out[i*{j} + j] += vec_in[i*{j} + j]/w[i*{j} + j];
        """.format(**shapes)
        # Original mixed operator replaced with "broken" arguments
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(Vv_tr)
        n = FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        # Again, assumes tensor product structure. Why use this if you
        # don't have some form of vertical extrusion?
        Kform = gammar('+') * jump(sigma, n=n) * dS_h

        # Here we deal with boundary conditions
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError(
                        "Dirichlet conditions for scalar variable not supported. Use a weak bc."
                    )
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError(
                        "Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(as_tuple(subdom, int))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {
                "top", "bottom"
            }
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * dot(sigma, n)
            measures = []
            trace_subdomains = []
            for subdomain in sorted(extruded_neumann_subdomains):
                measures.append({"top": ds_t, "bottom": ds_b}[subdomain])
                trace_subdomains.extend(
                    sorted({"top", "bottom"} - extruded_neumann_subdomains))

            measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
            markers = [int(x) for x in mesh.exterior_facets.unique_markers]
            dirichlet_subdomains = set(markers) - neumann_subdomains
            trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand * measure

        else:
            trace_subdomains = ["top", "bottom"]

        trace_bcs = [
            DirichletBC(Vv_tr, Constant(0.0), subdomain)
            for subdomain in trace_subdomains
        ]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(Vv_tr)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_bcs,
            form_compiler_parameters=self.ctx.fc_params,
            mat_type=mat_type)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("vert_trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(Vv_tr)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)
예제 #36
0
    def __init__(self, a, row_bcs=[], col_bcs=[], fc_params=None, appctx=None):
        self.a = a
        self.aT = adjoint(a)
        self.fc_params = fc_params
        self.appctx = appctx

        # Collect all DirichletBC instances including
        # DirichletBCs applied to an EquationBC.

        # all bcs (DirichletBC, EquationBCSplit)
        self.bcs = row_bcs
        self.bcs_col = col_bcs
        self.row_bcs = tuple(bc for bc in itertools.chain(*row_bcs)
                             if isinstance(bc, DirichletBC))
        self.col_bcs = tuple(bc for bc in itertools.chain(*col_bcs)
                             if isinstance(bc, DirichletBC))

        # create functions from test and trial space to help
        # with 1-form assembly
        test_space, trial_space = [
            a.arguments()[i].function_space() for i in (0, 1)
        ]
        from firedrake import function
        self._y = function.Function(test_space)
        self._x = function.Function(trial_space)

        # These are temporary storage for holding the BC
        # values during matvec application.  _xbc is for
        # the action and ._ybc is for transpose.
        if len(self.bcs) > 0:
            self._xbc = function.Function(trial_space)
        if len(self.col_bcs) > 0:
            self._ybc = function.Function(test_space)

        # Get size information from template vecs on test and trial spaces
        trial_vec = trial_space.dof_dset.layout_vec
        test_vec = test_space.dof_dset.layout_vec
        self.col_sizes = trial_vec.getSizes()
        self.row_sizes = test_vec.getSizes()

        self.block_size = (test_vec.getBlockSize(), trial_vec.getBlockSize())

        self.action = action(self.a, self._x)
        self.actionT = action(self.aT, self._y)

        from firedrake.assemble import create_assembly_callable

        # For assembling action(f, self._x)
        self.bcs_action = []
        for bc in self.bcs:
            if isinstance(bc, DirichletBC):
                self.bcs_action.append(bc)
            elif isinstance(bc, EquationBCSplit):
                self.bcs_action.append(bc.reconstruct(action_x=self._x))

        self._assemble_action = create_assembly_callable(
            self.action,
            tensor=self._y,
            bcs=self.bcs_action,
            form_compiler_parameters=self.fc_params)

        # For assembling action(adjoint(f), self._y)
        # Sorted list of equation bcs
        self.objs_actionT = []
        for bc in self.bcs:
            self.objs_actionT += bc.sorted_equation_bcs()
        self.objs_actionT.append(self)
        # Each par_loop is to run with appropriate masks on self._y
        self._assemble_actionT = []
        # Deepest EquationBCs first
        for bc in self.bcs:
            for ebc in bc.sorted_equation_bcs():
                self._assemble_actionT.append(
                    create_assembly_callable(
                        action(adjoint(ebc.f), self._y),
                        tensor=self._xbc,
                        bcs=None,
                        form_compiler_parameters=self.fc_params))
        # Domain last
        self._assemble_actionT.append(
            create_assembly_callable(
                self.actionT,
                tensor=self._x if len(self.bcs) == 0 else self._xbc,
                bcs=None,
                form_compiler_parameters=self.fc_params))
예제 #37
0
    def initialize(self, pc):
        """Set up the problem context. This takes the incoming
        three-field system and constructs the static
        condensation operators using Slate expressions.

        A KSP is created for the reduced system. The eliminated
        variables are recovered via back-substitution.
        """

        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.bcs import DirichletBC
        from firedrake.function import Function
        from firedrake.functionspace import FunctionSpace
        from firedrake.interpolation import interpolate

        prefix = pc.getOptionsPrefix() + "condensed_field_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()
        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("Context must be an ImplicitMatrixContext")

        self.bilinear_form = self.cxt.a

        # Retrieve the mixed function space
        W = self.bilinear_form.arguments()[0].function_space()
        if len(W) > 3:
            raise NotImplementedError("Only supports up to three function spaces.")

        elim_fields = PETSc.Options().getString(pc.getOptionsPrefix()
                                                + "pc_sc_eliminate_fields",
                                                None)
        if elim_fields:
            elim_fields = [int(i) for i in elim_fields.split(',')]
        else:
            # By default, we condense down to the last field in the
            # mixed space.
            elim_fields = [i for i in range(0, len(W) - 1)]

        condensed_fields = list(set(range(len(W))) - set(elim_fields))
        if len(condensed_fields) != 1:
            raise NotImplementedError("Cannot condense to more than one field")

        c_field, = condensed_fields

        # Need to duplicate a space which is NOT
        # associated with a subspace of a mixed space.
        Vc = FunctionSpace(W.mesh(), W[c_field].ufl_element())
        bcs = []
        cxt_bcs = self.cxt.row_bcs
        for bc in cxt_bcs:
            if bc.function_space().index != c_field:
                raise NotImplementedError("Strong BC set on unsupported space")
            if isinstance(bc.function_arg, Function):
                bc_arg = interpolate(bc.function_arg, Vc)
            else:
                # Constants don't need to be interpolated
                bc_arg = bc.function_arg
            bcs.append(DirichletBC(Vc, bc_arg, bc.sub_domain))

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        self.c_field = c_field
        self.condensed_rhs = Function(Vc)
        self.residual = Function(W)
        self.solution = Function(W)

        # Get expressions for the condensed linear system
        A = Tensor(self.bilinear_form)
        reduced_sys = self.condensed_system(A, self.residual, elim_fields)
        S_expr = reduced_sys.lhs
        r_expr = reduced_sys.rhs

        # Construct the condensed right-hand side
        self._assemble_Srhs = create_assembly_callable(
            r_expr,
            tensor=self.condensed_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Allocate and set the condensed operator
        self.S = allocate_matrix(S_expr,
                                 bcs=bcs,
                                 form_compiler_parameters=self.cxt.fc_params,
                                 mat_type=mat_type)
        self._assemble_S = create_assembly_callable(
            S_expr,
            tensor=self.S,
            bcs=bcs,
            form_compiler_parameters=self.cxt.fc_params,
            mat_type=mat_type)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Get nullspace for the condensed operator (if any).
        # This is provided as a user-specified callback which
        # returns the basis for the nullspace.
        nullspace = self.cxt.appctx.get("condensed_field_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(Vc)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up ksp for the condensed problem
        c_ksp = PETSc.KSP().create(comm=pc.comm)
        c_ksp.incrementTabLevel(1, parent=pc)
        c_ksp.setOptionsPrefix(prefix)
        c_ksp.setOperators(Smat)
        c_ksp.setUp()
        c_ksp.setFromOptions()
        self.condensed_ksp = c_ksp

        # Set up local solvers for backwards substitution
        self.local_solvers = self.local_solver_calls(A, self.residual,
                                                     self.solution,
                                                     elim_fields)
예제 #38
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.ctx = P.getPythonContext()

        if not isinstance(self.ctx, ImplicitMatrixContext):
            raise ValueError(
                "The python context must be an ImplicitMatrixContext")

        test, trial = self.ctx.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement(
            [ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        shapes = (V[self.vidx].finat_element.space_dimension(),
                  np.prod(V[self.vidx].shape))
        domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes
        instructions = """
        for i, j
            w[i,j] = w[i,j] + 1
        end
        """
        self.weight = Function(V[self.vidx])
        par_loop((domain, instructions),
                 ufl.dx, {"w": (self.weight, INC)},
                 is_loopy_kernel=True)

        instructions = """
        for i, j
            vec_out[i,j] = vec_out[i,j] + vec_in[i,j]/w[i,j]
        end
        """
        self.average_kernel = (domain, instructions)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.ctx.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        if mesh.cell_set._extruded:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_h +
                     gammar('+') * ufl.jump(sigma, n=n) * ufl.dS_v)
        else:
            Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS)

        # Here we deal with boundaries. If there are Neumann
        # conditions (which should be enforced strongly for
        # H(div)xL^2) then we need to add jump terms on the exterior
        # facets. If there are Dirichlet conditions (which should be
        # enforced weakly) then we need to zero out the trace
        # variables there as they are not active (otherwise the hybrid
        # problem is not well-posed).

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.ctx.row_bcs:
            # Find all the subdomains with neumann BCS
            # These are Dirichlet BCs on the vidx space
            neumann_subdomains = set()
            for bc in self.ctx.row_bcs:
                if bc.function_space().index == self.pidx:
                    raise NotImplementedError(
                        "Dirichlet conditions for scalar variable not supported. Use a weak bc"
                    )
                if bc.function_space().index != self.vidx:
                    raise NotImplementedError(
                        "Dirichlet bc set on unsupported space.")
                # append the set of sub domains
                subdom = bc.sub_domain
                if isinstance(subdom, str):
                    neumann_subdomains |= set([subdom])
                else:
                    neumann_subdomains |= set(
                        as_tuple(subdom, numbers.Integral))

            # separate out the top and bottom bcs
            extruded_neumann_subdomains = neumann_subdomains & {
                "top", "bottom"
            }
            neumann_subdomains = neumann_subdomains - extruded_neumann_subdomains

            integrand = gammar * ufl.dot(sigma, n)
            measures = []
            trace_subdomains = []
            if mesh.cell_set._extruded:
                ds = ufl.ds_v
                for subdomain in sorted(extruded_neumann_subdomains):
                    measures.append({
                        "top": ufl.ds_t,
                        "bottom": ufl.ds_b
                    }[subdomain])
                trace_subdomains.extend(
                    sorted({"top", "bottom"} - extruded_neumann_subdomains))
            else:
                ds = ufl.ds
            if "on_boundary" in neumann_subdomains:
                measures.append(ds)
            else:
                measures.extend((ds(sd) for sd in sorted(neumann_subdomains)))
                markers = [int(x) for x in mesh.exterior_facets.unique_markers]
                dirichlet_subdomains = set(markers) - neumann_subdomains
                trace_subdomains.extend(sorted(dirichlet_subdomains))

            for measure in measures:
                Kform += integrand * measure

            trace_bcs = [
                DirichletBC(TraceSpace, Constant(0.0), subdomain)
                for subdomain in trace_subdomains
            ]

        else:
            # No bcs were provided, we assume weak Dirichlet conditions.
            # We zero out the contribution of the trace variables on
            # the exterior boundary. Extruded cells will have both
            # horizontal and vertical facets
            trace_subdomains = ["on_boundary"]
            if mesh.cell_set._extruded:
                trace_subdomains.extend(["bottom", "top"])
            trace_bcs = [
                DirichletBC(TraceSpace, Constant(0.0), subdomain)
                for subdomain in trace_subdomains
            ]

        # Make a SLATE tensor from Kform
        K = Tensor(Kform)

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * AssembledVector(self.broken_residual),
            tensor=self.schur_rhs,
            form_compiler_parameters=self.ctx.fc_params)

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp,
                                 bcs=trace_bcs,
                                 form_compiler_parameters=self.ctx.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix)
        self._assemble_S = create_assembly_callable(
            schur_comp,
            tensor=self.S,
            bcs=trace_bcs,
            form_compiler_parameters=self.ctx.fc_params,
            mat_type=mat_type)

        with timed_region("HybridOperatorAssembly"):
            self._assemble_S()

        Smat = self.S.petscmat

        nullspace = self.ctx.appctx.get("trace_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(TraceSpace)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)
예제 #39
0
 def assembler(self):
     from firedrake.assemble import create_assembly_callable
     return create_assembly_callable(self.rhs_form, tensor=self.residual,
                                     form_compiler_parameters=self.form_compiler_parameters)
예제 #40
0
    def initialize(self, pc):
        """Set up the problem context. Take the original
        mixed problem and reformulate the problem as a
        hybridized mixed system.

        A KSP is created for the Lagrange multiplier system.
        """
        from firedrake import (FunctionSpace, Function, Constant,
                               TrialFunction, TrialFunctions, TestFunction,
                               DirichletBC, assemble)
        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.formmanipulation import split_form
        from ufl.algorithms.replace import replace

        # Extract the problem context
        prefix = pc.getOptionsPrefix() + "hybridization_"
        _, P = pc.getOperators()
        self.cxt = P.getPythonContext()

        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("The python context must be an ImplicitMatrixContext")

        test, trial = self.cxt.a.arguments()

        V = test.function_space()
        mesh = V.mesh()

        if len(V) != 2:
            raise ValueError("Expecting two function spaces.")

        if all(Vi.ufl_element().value_shape() for Vi in V):
            raise ValueError("Expecting an H(div) x L2 pair of spaces.")

        # Automagically determine which spaces are vector and scalar
        for i, Vi in enumerate(V):
            if Vi.ufl_element().sobolev_space().name == "HDiv":
                self.vidx = i
            else:
                assert Vi.ufl_element().sobolev_space().name == "L2"
                self.pidx = i

        # Create the space of approximate traces.
        W = V[self.vidx]
        if W.ufl_element().family() == "Brezzi-Douglas-Marini":
            tdegree = W.ufl_element().degree()

        else:
            try:
                # If we have a tensor product element
                h_deg, v_deg = W.ufl_element().degree()
                tdegree = (h_deg - 1, v_deg - 1)

            except TypeError:
                tdegree = W.ufl_element().degree() - 1

        TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

        # Break the function spaces and define fully discontinuous spaces
        broken_elements = ufl.MixedElement([ufl.BrokenElement(Vi.ufl_element()) for Vi in V])
        V_d = FunctionSpace(mesh, broken_elements)

        # Set up the functions for the original, hybridized
        # and schur complement systems
        self.broken_solution = Function(V_d)
        self.broken_residual = Function(V_d)
        self.trace_solution = Function(TraceSpace)
        self.unbroken_solution = Function(V)
        self.unbroken_residual = Function(V)

        # Set up the KSP for the hdiv residual projection
        hdiv_mass_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_mass_ksp.setOptionsPrefix(prefix + "hdiv_residual_")

        # HDiv mass operator
        p = TrialFunction(V[self.vidx])
        q = TestFunction(V[self.vidx])
        mass = ufl.dot(p, q)*ufl.dx
        # TODO: Bcs?
        M = assemble(mass, bcs=None, form_compiler_parameters=self.cxt.fc_params)
        M.force_evaluation()
        Mmat = M.petscmat

        hdiv_mass_ksp.setOperators(Mmat)
        hdiv_mass_ksp.setUp()
        hdiv_mass_ksp.setFromOptions()
        self.hdiv_mass_ksp = hdiv_mass_ksp

        # Storing the result of A.inv * r, where A is the HDiv
        # mass matrix and r is the HDiv residual
        self._primal_r = Function(V[self.vidx])

        tau = TestFunction(V_d[self.vidx])
        self._assemble_broken_r = create_assembly_callable(
            ufl.dot(self._primal_r, tau)*ufl.dx,
            tensor=self.broken_residual.split()[self.vidx],
            form_compiler_parameters=self.cxt.fc_params)

        # Create the symbolic Schur-reduction:
        # Original mixed operator replaced with "broken"
        # arguments
        arg_map = {test: TestFunction(V_d),
                   trial: TrialFunction(V_d)}
        Atilde = Tensor(replace(self.cxt.a, arg_map))
        gammar = TestFunction(TraceSpace)
        n = ufl.FacetNormal(mesh)
        sigma = TrialFunctions(V_d)[self.vidx]

        # We zero out the contribution of the trace variables on the exterior
        # boundary. Extruded cells will have both horizontal and vertical
        # facets
        if mesh.cell_set._extruded:
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), "on_boundary"),
                         DirichletBC(TraceSpace, Constant(0.0), "bottom"),
                         DirichletBC(TraceSpace, Constant(0.0), "top")]
            K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS_h +
                       gammar('+') * ufl.dot(sigma, n) * ufl.dS_v)
        else:
            trace_bcs = [DirichletBC(TraceSpace, Constant(0.0), "on_boundary")]
            K = Tensor(gammar('+') * ufl.dot(sigma, n) * ufl.dS)

        # If boundary conditions are contained in the ImplicitMatrixContext:
        if self.cxt.row_bcs:
            raise NotImplementedError("Strong BCs not currently handled. Try imposing them weakly.")

        # Assemble the Schur complement operator and right-hand side
        self.schur_rhs = Function(TraceSpace)
        self._assemble_Srhs = create_assembly_callable(
            K * Atilde.inv * self.broken_residual,
            tensor=self.schur_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        schur_comp = K * Atilde.inv * K.T
        self.S = allocate_matrix(schur_comp, bcs=trace_bcs,
                                 form_compiler_parameters=self.cxt.fc_params)
        self._assemble_S = create_assembly_callable(schur_comp,
                                                    tensor=self.S,
                                                    bcs=trace_bcs,
                                                    form_compiler_parameters=self.cxt.fc_params)

        self._assemble_S()
        self.S.force_evaluation()
        Smat = self.S.petscmat

        # Nullspace for the multiplier problem
        nullspace = create_schur_nullspace(P, -K * Atilde,
                                           V, V_d, TraceSpace,
                                           pc.comm)
        if nullspace:
            Smat.setNullSpace(nullspace)

        # Set up the KSP for the system of Lagrange multipliers
        trace_ksp = PETSc.KSP().create(comm=pc.comm)
        trace_ksp.setOptionsPrefix(prefix)
        trace_ksp.setOperators(Smat)
        trace_ksp.setUp()
        trace_ksp.setFromOptions()
        self.trace_ksp = trace_ksp

        split_mixed_op = dict(split_form(Atilde.form))
        split_trace_op = dict(split_form(K.form))

        # Generate reconstruction calls
        self._reconstruction_calls(split_mixed_op, split_trace_op)

        # NOTE: The projection stage *might* be replaced by a Fortin
        # operator. We may want to allow the user to specify if they
        # wish to use a Fortin operator over a projection, or vice-versa.
        # In a future add-on, we can add a switch which chooses either
        # the Fortin reconstruction or the usual KSP projection.

        # Set up the projection KSP
        hdiv_projection_ksp = PETSc.KSP().create(comm=pc.comm)
        hdiv_projection_ksp.setOptionsPrefix(prefix + 'hdiv_projection_')

        # Reuse the mass operator from the hdiv_mass_ksp
        hdiv_projection_ksp.setOperators(Mmat)

        # Construct the RHS for the projection stage
        self._projection_rhs = Function(V[self.vidx])
        self._assemble_projection_rhs = create_assembly_callable(
            ufl.dot(self.broken_solution.split()[self.vidx], q)*ufl.dx,
            tensor=self._projection_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Finalize ksp setup
        hdiv_projection_ksp.setUp()
        hdiv_projection_ksp.setFromOptions()
        self.hdiv_projection_ksp = hdiv_projection_ksp
예제 #41
0
    def initialize(self, pc):
        """Set up the problem context. This takes the incoming
        three-field system and constructs the static
        condensation operators using Slate expressions.

        A KSP is created for the reduced system. The eliminated
        variables are recovered via back-substitution.
        """

        from firedrake.assemble import (allocate_matrix,
                                        create_assembly_callable)
        from firedrake.bcs import DirichletBC
        from firedrake.function import Function
        from firedrake.functionspace import FunctionSpace
        from firedrake.interpolation import interpolate

        prefix = pc.getOptionsPrefix() + "condensed_field_"
        A, P = pc.getOperators()
        self.cxt = A.getPythonContext()
        if not isinstance(self.cxt, ImplicitMatrixContext):
            raise ValueError("Context must be an ImplicitMatrixContext")

        self.bilinear_form = self.cxt.a

        # Retrieve the mixed function space
        W = self.bilinear_form.arguments()[0].function_space()
        if len(W) > 3:
            raise NotImplementedError("Only supports up to three function spaces.")

        elim_fields = PETSc.Options().getString(pc.getOptionsPrefix()
                                                + "pc_sc_eliminate_fields",
                                                None)
        if elim_fields:
            elim_fields = [int(i) for i in elim_fields.split(',')]
        else:
            # By default, we condense down to the last field in the
            # mixed space.
            elim_fields = [i for i in range(0, len(W) - 1)]

        condensed_fields = list(set(range(len(W))) - set(elim_fields))
        if len(condensed_fields) != 1:
            raise NotImplementedError("Cannot condense to more than one field")

        c_field, = condensed_fields

        # Need to duplicate a space which is NOT
        # associated with a subspace of a mixed space.
        Vc = FunctionSpace(W.mesh(), W[c_field].ufl_element())
        bcs = []
        cxt_bcs = self.cxt.row_bcs
        for bc in cxt_bcs:
            if bc.function_space().index != c_field:
                raise NotImplementedError("Strong BC set on unsupported space")
            if isinstance(bc.function_arg, Function):
                bc_arg = interpolate(bc.function_arg, Vc)
            else:
                # Constants don't need to be interpolated
                bc_arg = bc.function_arg
            bcs.append(DirichletBC(Vc, bc_arg, bc.sub_domain))

        mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

        self.c_field = c_field
        self.condensed_rhs = Function(Vc)
        self.residual = Function(W)
        self.solution = Function(W)

        # Get expressions for the condensed linear system
        A_tensor = Tensor(self.bilinear_form)
        reduced_sys = self.condensed_system(A_tensor, self.residual, elim_fields)
        S_expr = reduced_sys.lhs
        r_expr = reduced_sys.rhs

        # Construct the condensed right-hand side
        self._assemble_Srhs = create_assembly_callable(
            r_expr,
            tensor=self.condensed_rhs,
            form_compiler_parameters=self.cxt.fc_params)

        # Allocate and set the condensed operator
        self.S = allocate_matrix(S_expr,
                                 bcs=bcs,
                                 form_compiler_parameters=self.cxt.fc_params,
                                 mat_type=mat_type,
                                 options_prefix=prefix,
                                 appctx=self.get_appctx(pc))

        self._assemble_S = create_assembly_callable(
            S_expr,
            tensor=self.S,
            bcs=bcs,
            form_compiler_parameters=self.cxt.fc_params,
            mat_type=mat_type)

        self._assemble_S()
        Smat = self.S.petscmat

        # If a different matrix is used for preconditioning,
        # assemble this as well
        if A != P:
            self.cxt_pc = P.getPythonContext()
            P_tensor = Tensor(self.cxt_pc.a)
            P_reduced_sys = self.condensed_system(P_tensor,
                                                  self.residual,
                                                  elim_fields)
            S_pc_expr = P_reduced_sys.lhs
            self.S_pc_expr = S_pc_expr

            # Allocate and set the condensed operator
            self.S_pc = allocate_matrix(S_expr,
                                        bcs=bcs,
                                        form_compiler_parameters=self.cxt.fc_params,
                                        mat_type=mat_type,
                                        options_prefix=prefix,
                                        appctx=self.get_appctx(pc))

            self._assemble_S_pc = create_assembly_callable(
                S_pc_expr,
                tensor=self.S_pc,
                bcs=bcs,
                form_compiler_parameters=self.cxt.fc_params,
                mat_type=mat_type)

            self._assemble_S_pc()
            Smat_pc = self.S_pc.petscmat

        else:
            self.S_pc_expr = S_expr
            Smat_pc = Smat

        # Get nullspace for the condensed operator (if any).
        # This is provided as a user-specified callback which
        # returns the basis for the nullspace.
        nullspace = self.cxt.appctx.get("condensed_field_nullspace", None)
        if nullspace is not None:
            nsp = nullspace(Vc)
            Smat.setNullSpace(nsp.nullspace(comm=pc.comm))

        # Create a SNESContext for the DM associated with the trace problem
        self._ctx_ref = self.new_snes_ctx(pc,
                                          S_expr,
                                          bcs,
                                          mat_type,
                                          self.cxt.fc_params,
                                          options_prefix=prefix)

        # Push new context onto the dm associated with the condensed problem
        c_dm = Vc.dm

        # Set up ksp for the condensed problem
        c_ksp = PETSc.KSP().create(comm=pc.comm)
        c_ksp.incrementTabLevel(1, parent=pc)

        # Set the dm for the condensed solver
        c_ksp.setDM(c_dm)
        c_ksp.setDMActive(False)
        c_ksp.setOptionsPrefix(prefix)
        c_ksp.setOperators(A=Smat, P=Smat_pc)
        self.condensed_ksp = c_ksp

        with dmhooks.add_hooks(c_dm, self,
                               appctx=self._ctx_ref,
                               save=False):
            c_ksp.setFromOptions()

        # Set up local solvers for backwards substitution
        self.local_solvers = self.local_solver_calls(A_tensor,
                                                     self.residual,
                                                     self.solution,
                                                     elim_fields)