def test_levelset(dim, inner_t, controlspace_t, use_extension, pytestconfig): verbose = pytestconfig.getoption("verbose") """ Test template for fsz.LevelsetFunctional.""" clscale = 0.1 if dim == 2 else 0.2 # make the mesh a bit coarser if we are using a multigrid control space as # we are refining anyway if controlspace_t == fs.FeMultiGridControlSpace: clscale *= 4 if dim == 2: mesh = fs.DiskMesh(clscale) elif dim == 3: mesh = fs.SphereMesh(clscale) else: raise NotImplementedError if controlspace_t == fs.BsplineControlSpace: if dim == 2: bbox = [(-2, 2), (-2, 2)] orders = [2, 2] levels = [4, 4] else: bbox = [(-3, 3), (-3, 3), (-3, 3)] orders = [2, 2, 2] levels = [3, 3, 3] Q = fs.BsplineControlSpace(mesh, bbox, orders, levels) elif controlspace_t == fs.FeMultiGridControlSpace: Q = fs.FeMultiGridControlSpace(mesh, refinements=1, order=2) else: Q = controlspace_t(mesh) inner = inner_t(Q) # if running with -v or --verbose, then export the shapes if verbose: out = fd.File("domain.pvd") def cb(*args): out.write(Q.mesh_m.coordinates) cb() else: cb = None # levelset test case if dim == 2: (x, y) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x, 2)) + pow(1.3 * y, 2) - 1. elif dim == 3: (x, y, z) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x, 2)) + pow(0.8 * y, 2) + pow(1.3 * z, 2) - 1. else: raise NotImplementedError J = fsz.LevelsetFunctional(f, Q, cb=cb, scale=0.1) if use_extension == "w_ext": ext = fs.ElasticityExtension(Q.V_r) if use_extension == "w_ext_fixed_dim": ext = fs.ElasticityExtension(Q.V_r, fixed_dims=[0]) else: ext = None q = fs.ControlVector(Q, inner, boundary_extension=ext) # these tolerances are not very stringent, but solutions are correct with # tighter tolerances, the combination # FeMultiGridControlSpace-ElasticityInnerProduct fails because the mesh # self-intersects (one should probably be more careful with the opt params) grad_tol = 1e-1 itlim = 15 itlimsub = 15 # Volume constraint vol = fsz.LevelsetFunctional(fd.Constant(1.0), Q, scale=1) initial_vol = vol.value(q, None) econ = fs.EqualityConstraint([vol], target_value=[initial_vol]) emul = ROL.StdVector(1) # ROL parameters params_dict = { 'Step': { 'Type': 'Augmented Lagrangian', 'Augmented Lagrangian': { 'Subproblem Step Type': 'Line Search', 'Penalty Parameter Growth Factor': 1.05, 'Print Intermediate Optimization History': True, 'Subproblem Iteration Limit': itlimsub }, 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } }, }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 50 } }, 'Status Test': { 'Gradient Tolerance': grad_tol, 'Step Tolerance': 1e-10, 'Iteration Limit': itlim } } params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q, econ=econ, emul=emul) solver = ROL.OptimizationSolver(problem, params) solver.solve() # verify that the norm of the gradient at optimum is small enough # and that the volume has not changed too much state = solver.getAlgorithmState() assert (state.gnorm < grad_tol) assert abs(vol.value(q, None) - initial_vol) < 1e-2
import firedrake as fd import fireshape as fs import fireshape.zoo as fsz import ROL dim = 2 mesh = fs.DiskMesh(0.4) Q = fs.FeMultiGridControlSpace(mesh, refinements=4, order=2) # Q = fs.FeControlSpace(mesh) # inner = fs.SurfaceInnerProduct(Q) inner = fs.ElasticityInnerProduct(Q) extension = fs.ElasticityExtension(Q.V_r, direct_solve=True) mesh_m = Q.mesh_m if dim == 2: (x, y) = fd.SpatialCoordinate(mesh_m) f = (pow(x, 2)) + pow(0.5 * y, 2) - 1. else: (x, y, z) = fd.SpatialCoordinate(mesh_m) f = (pow(x - 0.5, 2)) + pow(y - 0.5, 2) + pow(z - 0.5, 2) - 2. q = fs.ControlVector(Q, inner, boundary_extension=extension) out = fd.File("domain.pvd") J = fsz.LevelsetFunctional(f, Q, cb=lambda: out.write(mesh_m.coordinates)) J.cb() g = q.clone() J.update(q, None, 1) J.gradient(g, q, None) g.scale(-0.3) J.update(g, None, 1)
def test_periodic(dim, inner_t, use_extension, pytestconfig): verbose = pytestconfig.getoption("verbose") """ Test template for PeriodicControlSpace.""" if dim == 2: mesh = fd.PeriodicUnitSquareMesh(30, 30) elif dim == 3: mesh = fd.PeriodicUnitCubeMesh(20, 20, 20) else: raise NotImplementedError Q = fs.FeControlSpace(mesh) inner = inner_t(Q) # levelset test case V = fd.FunctionSpace(Q.mesh_m, "DG", 0) sigma = fd.Function(V) if dim == 2: x, y = fd.SpatialCoordinate(Q.mesh_m) g = fd.sin(y * np.pi) # truncate at bdry f = fd.cos(2 * np.pi * x) * g perturbation = 0.05 * fd.sin(x * np.pi) * g**2 sigma.interpolate(g * fd.cos(2 * np.pi * x * (1 + perturbation))) elif dim == 3: x, y, z = fd.SpatialCoordinate(Q.mesh_m) g = fd.sin(y * np.pi) * fd.sin(z * np.pi) # truncate at bdry f = fd.cos(2 * np.pi * x) * g perturbation = 0.05 * fd.sin(x * np.pi) * g**2 sigma.interpolate(g * fd.cos(2 * np.pi * x * (1 + perturbation))) else: raise NotImplementedError class LevelsetFct(fs.ShapeObjective): def __init__(self, sigma, f, *args, **kwargs): super().__init__(*args, **kwargs) self.sigma = sigma # initial self.f = f # target Vdet = fd.FunctionSpace(Q.mesh_r, "DG", 0) self.detDT = fd.Function(Vdet) def value_form(self): # volume integral self.detDT.interpolate(fd.det(fd.grad(self.Q.T))) if min(self.detDT.vector()) > 0.05: integrand = (self.sigma - self.f)**2 else: integrand = np.nan * (self.sigma - self.f)**2 return integrand * fd.dx(metadata={"quadrature_degree": 1}) # if running with -v or --verbose, then export the shapes if verbose: out = fd.File("sigma.pvd") def cb(*args): out.write(sigma) else: cb = None J = LevelsetFct(sigma, f, Q, cb=cb) if use_extension == "w_ext": ext = fs.ElasticityExtension(Q.V_r) if use_extension == "w_ext_fixed_dim": ext = fs.ElasticityExtension(Q.V_r, fixed_dims=[0]) else: ext = None q = fs.ControlVector(Q, inner, boundary_extension=ext) """ move mesh a bit to check that we are not doing the taylor test in T=id """ g = q.clone() J.gradient(g, q, None) q.plus(g) J.update(q, None, 1) """ Start taylor test """ J.gradient(g, q, None) res = J.checkGradient(q, g, 5, 1) errors = [l[-1] for l in res] assert (errors[-1] < 0.11 * errors[-2]) q.scale(0) """ End taylor test """ # ROL parameters grad_tol = 1e-4 params_dict = { 'Step': { 'Type': 'Trust Region' }, 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 25 } }, 'Status Test': { 'Gradient Tolerance': grad_tol, 'Step Tolerance': 1e-10, 'Iteration Limit': 40 } } # assemble and solve ROL optimization problem params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() # verify that the norm of the gradient at optimum is small enough state = solver.getAlgorithmState() assert (state.gnorm < grad_tol)
def test_regularization(controlspace_t, use_extension): n = 10 mesh = fd.UnitSquareMesh(n, n) if controlspace_t == fs.FeMultiGridControlSpace: Q = fs.FeMultiGridControlSpace(mesh, refinements=1, order=2) else: Q = controlspace_t(mesh) if use_extension: inner = fs.SurfaceInnerProduct(Q) ext = fs.ElasticityExtension(Q.V_r) else: inner = fs.LaplaceInnerProduct(Q) ext = None q = fs.ControlVector(Q, inner, boundary_extension=ext) X = fd.SpatialCoordinate(mesh) q.fun.interpolate(0.5 * X) lower_bound = Q.T.copy(deepcopy=True) lower_bound.interpolate(fd.Constant((-0.0, -0.0))) upper_bound = Q.T.copy(deepcopy=True) upper_bound.interpolate(fd.Constant((+1.3, +0.9))) J1 = fsz.MoYoBoxConstraint(1, [1, 2, 3, 4], Q, lower_bound=lower_bound, upper_bound=upper_bound) J2 = fsz.MoYoSpectralConstraint(1, fd.Constant(0.2), Q) J3 = fsz.DeformationRegularization(Q, l2_reg=.1, sym_grad_reg=1., skew_grad_reg=.5) if isinstance(Q, fs.FeMultiGridControlSpace): J4 = fsz.CoarseDeformationRegularization(Q, l2_reg=.1, sym_grad_reg=1., skew_grad_reg=.5) Js = 0.1 * J1 + J2 + 2. * (J3 + J4) else: Js = 0.1 * J1 + J2 + 2. * J3 g = q.clone() def run_taylor_test(J): J.update(q, None, 1) J.gradient(g, q, None) return J.checkGradient(q, g, 7, 1) def check_result(test_result): for i in range(len(test_result) - 1): assert test_result[i + 1][3] <= test_result[i][3] * 0.11 check_result(run_taylor_test(J1)) check_result(run_taylor_test(J2)) check_result(run_taylor_test(J3)) if isinstance(Q, fs.FeMultiGridControlSpace): check_result(run_taylor_test(J4)) check_result(run_taylor_test(Js))
def test_levelset(dim, inner_t, controlspace_t, use_extension, pytestconfig): verbose = pytestconfig.getoption("verbose") """ Test template for fsz.LevelsetFunctional.""" clscale = 0.1 if dim == 2 else 0.2 # make the mesh a bit coarser if we are using a multigrid control space as # we are refining anyway if controlspace_t == fs.FeMultiGridControlSpace: clscale *= 2 if dim == 2: mesh = fs.DiskMesh(clscale) elif dim == 3: mesh = fs.SphereMesh(clscale) else: raise NotImplementedError if controlspace_t == fs.BsplineControlSpace: if dim == 2: bbox = [(-2, 2), (-2, 2)] orders = [2, 2] levels = [4, 4] else: bbox = [(-3, 3), (-3, 3), (-3, 3)] orders = [2, 2, 2] levels = [3, 3, 3] Q = fs.BsplineControlSpace(mesh, bbox, orders, levels) elif controlspace_t == fs.FeMultiGridControlSpace: Q = fs.FeMultiGridControlSpace(mesh, refinements=1, order=2) else: Q = controlspace_t(mesh) inner = inner_t(Q) # if running with -v or --verbose, then export the shapes if verbose: out = fd.File("domain.pvd") def cb(*args): out.write(Q.mesh_m.coordinates) cb() else: cb = None # levelset test case if dim == 2: (x, y) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x, 2)) + pow(1.3 * y, 2) - 1. elif dim == 3: (x, y, z) = fd.SpatialCoordinate(Q.mesh_m) f = (pow(x, 2)) + pow(0.8 * y, 2) + pow(1.3 * z, 2) - 1. else: raise NotImplementedError J = fsz.LevelsetFunctional(f, Q, cb=cb, scale=0.1) if use_extension == "w_ext": ext = fs.ElasticityExtension(Q.V_r) if use_extension == "w_ext_fixed_dim": ext = fs.ElasticityExtension(Q.V_r, fixed_dims=[0]) else: ext = None q = fs.ControlVector(Q, inner, boundary_extension=ext) """ move mesh a bit to check that we are not doing the taylor test in T=id """ g = q.clone() J.gradient(g, q, None) q.plus(g) J.update(q, None, 1) """ Start taylor test """ J.gradient(g, q, None) res = J.checkGradient(q, g, 5, 1) errors = [l[-1] for l in res] assert (errors[-1] < 0.11 * errors[-2]) q.scale(0) """ End taylor test """ grad_tol = 1e-6 if dim == 2 else 1e-4 # ROL parameters params_dict = { 'General': { 'Secant': { 'Type': 'Limited-Memory BFGS', 'Maximum Storage': 50 } }, 'Step': { 'Type': 'Line Search', 'Line Search': { 'Descent Method': { 'Type': 'Quasi-Newton Step' } } }, 'Status Test': { 'Gradient Tolerance': grad_tol, 'Step Tolerance': 1e-10, 'Iteration Limit': 150 } } # assemble and solve ROL optimization problem params = ROL.ParameterList(params_dict, "Parameters") problem = ROL.OptimizationProblem(J, q) solver = ROL.OptimizationSolver(problem, params) solver.solve() # verify that the norm of the gradient at optimum is small enough state = solver.getAlgorithmState() assert (state.gnorm < grad_tol)