#plot_kin_dat('stahl2.asc',1) #plot_kin_datx('holz80_2.asc',1) #plot_kin_datx('holz_c1.asc',1) #p.subplot(132) p.xlabel(u"Temperatur [°C]", fontsize = 12) p.ylabel(u"Zeitdauer [hr á 5 °C] ", fontsize = 12) N.sort(dataxy,1) mat = N.array(dataxy) p.plot(mat[:,0],mat[:,1],'o') res = minuit_wrapper(fitfunc_lin, mat) #p.plot(mat[:,0],(fitfunc_lin(mat[:,0],res.values['m'],res.values['b'])),'+') xvals, yvals, xvals_band, yvals_band, chi2pdof = errorband(res, fitfunc_lin, len(mat), 40, 130, 5) p.fill(xvals_band, yvals_band, '#aaaaaa') #p.plot(mat.transpose()[0], mat.transpose()[1], 'r+') p.plot(xvals, yvals) print('Best fit parameters: ', res.values) print('Best fit uncertainties: ', res.errors) time_sum=res.values['b'] for e in range(80): time_sum = time_sum + res.values['m']*(e*5)+res.values['b'] print (e*delta_t),time_sum/24,res.values['m']*(e*5)+res.values['b'] p.show() # für linares Model
# ============================================================================ # Executable program section # ============================================================================ # Step 1: Reproduce the previous work (using fithelper this time). lindat = np.array([0.9,0.2, 2.1,0.3, 3.0,0.5, 4.1,0.5]).reshape(4,2) def fitfunc(x, a, b): """The fit function: A straight line.""" return b + x*a res = minuit_wrapper(fitfunc, lindat) print('Result: ', res.values) print('Uncertainties: ', res.errors) xvals, yvals, xvals_band, yvals_band, chi2pdof = errorband(res, fitfunc, len(lindat), 0., 5., 0.1) plt.fill(xvals_band, yvals_band, '#aaaaaa') plt.plot(lindat.transpose()[0], lindat.transpose()[1], 'r+') plt.plot(xvals, yvals) plt.show() print('chi^2/dof = ', chi2pdof) raw_input('Press return ...') # Step 2: Read in the form factor data and plot it. fh = open('realdata_2.dat', 'r') ; content=fh.readlines() ; fh.close() ffdat = [] for line in content: ffdat.append(np.array([float(x) for x in line.split(',')])) ffdat = np.array(ffdat)
# Diagramm erzeugen lindat = column_stack([data_x,data_y]) def fitfunc(x, a,b,c,d,e,f,g,h): """The fit function: e-func.""" return a*x**8+b*x**7+c*x**6+d*x**5+e*x**4+f*x**3+g*x**2+h*x res = minuit_wrapper(fitfunc, lindat) print('Result: ', res.values) print('Uncertainties: ', res.errors) print('polyfit:',z) #p.plot(data_x,data_y,data_x,p40(data_x)) p.plot(data_x,data_y,data_x,fitfunc(data_x, **res.values)) xvals, yvals, xvals_band, yvals_band, chi2pdof = errorband(res, fitfunc, len(lindat), 1.7, 3.16, 0.025) p.fill(xvals_band, yvals_band, '#aaaaaa') p.plot(lindat.transpose()[0], lindat.transpose()[1], 'r+') p.plot(xvals, yvals) p.show() print('chi^2/dof = ', chi2pdof) # Schätzwert Temperatur T0= 50 temp_list=[] time_list=[] time_list2=[] # Berechne Temperaturanstieg für diesen Punkt while True:
lindat = column_stack([timeline,Temperatur/135]) p.plot(timeline,Temperatur/135,lw=2) def fitfunc(x, b): """The fit function: e-func.""" return (1-exp(-(b)*x)) res = minuit_wrapper(fitfunc, lindat) print('Result: ', res.values) print('Uncertainties: ', res.errors) #a_fit = res.values['a'] b_fit = res.values['b'] p.plot(timeline,fitfunc(timeline,b_fit),lw=2) xvals, yvals, xvals_band, yvals_band, chi2pdof = errorband(res, fitfunc, len(lindat), 0., 2., 2) p.fill(xvals_band, yvals_band, '#aaaaaa') p.plot(lindat.transpose()[0], lindat.transpose()[1], 'r+') p.plot(xvals, yvals) #plt.show() print('chi^2/dof = ', chi2pdof) print xvals,yvals #p.plot(timeline,fitfunc(p0[:],timeline),lw=2) #p.plot(timeline,fitfunc(p1[:],timeline)*(130.6/p1[0]),lw=2) #p.plot(timeline,Temperatur-fitfunc(((p1[:])*(130.6/p1[0])),timeline),lw=2) #p.plot(timeline,Ofen,lw=2) #data=column_stack((1000/(Temperatur+273)[1:],Ableit))