def reset(self): if self._filename is None: self.delay_queue = DelayQueue(0.01) else: self.delay_queue = NoloopDelayQueue(self._filename, 0.01) self.random_video() self.state = np.zeros((S_INFO, S_LEN)) return self.state
def __init__(self, random_seed=RANDOM_SEED, filename=None): np.random.seed(random_seed) self._filename = filename if self._filename is None: self.delay_queue = DelayQueue(0.01) else: self.delay_queue = NoloopDelayQueue(self._filename, 0.01) self.simtime = 0.0 self._video = None self._videocount = 0.0 self._videoindex = 0.0 self._video_vmaf = [] self._video_len = [] self.random_video()
def __init__(self, random_seed=0, filename=None): #os.system('rm -rf results') os.system('mkdir results') np.random.seed(int(time.time())) _id = np.random.randint(1000) self._filename = filename if self._filename is None: self.delay_queue = DelayQueue(0.01) else: self.delay_queue = NoloopDelayQueue(self._filename, 0.01) self.simtime = 0.0 self._video = None self._videocount = 0.0 self._videoindex = 0.0 self._video_vmaf = [] self._video_len = [] self.random_video() self.last_rtt = -1 self.last_vmaf = -1 self.time_stamp = 0.0 self.state = np.zeros((S_INFO, S_LEN)) self.x = tf.placeholder( shape=[None, INPUT_SEQ, INPUT_H, INPUT_W, INPUT_D], dtype=tf.float32) self.y_ = tf.placeholder(shape=[None, OUTPUT_DIM], dtype=tf.float32) self.core_net = self.vqn_model(self.x) self.core_net_loss = tflearn.objectives.mean_square( self.core_net, self.y_) gpu_options = tf.GPUOptions(allow_growth=True) self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) self.sess.run(tf.global_variables_initializer()) self.saver = tf.train.Saver() self.saver.restore(self.sess, "model/nn_model_ep_best.ckpt") self.x_buff = np.zeros([INPUT_SEQ, INPUT_H, INPUT_W, INPUT_D]) self.action_space = spaces.Discrete(A_DIM) self.observation_space = spaces.Box(0, 5.0, [S_INFO, S_LEN], dtype=np.float32) self.last_vmaf_fake = -1 _strtime = time.strftime('%b-%d-%H:%M:%S-%Y', time.localtime()) self.log_file = open(LOG_FILE + '_' + str(_strtime), 'wb')
def __init__(self, random_seed=RANDOM_SEED, filename=None): np.random.seed(random_seed) self._filename = filename if self._filename is None: self.delay_queue = DelayQueue(0.01) else: self.delay_queue = NoloopDelayQueue(self._filename, 0.01) self.simtime = 0.0 self._video = None self._videocount = 0.0 self._videoindex = 0.0 self._video_vmaf = [] self._video_len = [] self.random_video() self.x = tf.placeholder( shape=[None, INPUT_SEQ, INPUT_H, INPUT_W, INPUT_D], dtype=tf.float32) self.y_ = tf.placeholder(shape=[None, OUTPUT_DIM], dtype=tf.float32) self.core_net = self.vqn_model(self.x) self.core_net_loss = tflearn.objectives.mean_square( self.core_net, self.y_) # + lossL2 # self.core_train_op = tf.train.AdamOptimizer( # learning_rate=LR_RATE).minimize(self.core_net_loss) # self.core_net_acc = tf.reduce_mean( # tf.abs(core_net - y_) / (tf.abs(core_net) + tf.abs(y_) / 2)) # core_net_mape = tf.subtract(1.0, tf.reduce_mean( # tf.abs(core_net - y_) / tf.abs(y_))) #train_len = X.shape[0] #g2 = tf.Graph() #gpu_options = tf.GPUOptions(allow_growth=True) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.saver = tf.train.Saver() self.saver.restore(self.sess, "model/nn_model_ep_350.ckpt") self.x_buff = np.zeros([INPUT_SEQ, INPUT_H, INPUT_W, INPUT_D])