def test_placeholder_imputer(): input_df = pd.DataFrame({'col1': [10, 13, 10], 'col2': [50, 100, None]}) input_df2 = pd.DataFrame({'col1': [10, None], 'col2': [None, 100]}) expected1 = pd.DataFrame({ 'col1': [10, 13, 10], 'col2': [50.0, 100.0, -999.0] }) expected2 = pd.DataFrame({'col1': [10, -999.0], 'col2': [-999.0, 100]}) pred_fn, data, log = placeholder_imputer(input_df, ["col1", "col2"], -999) assert expected1.equals(data) assert expected2.equals(pred_fn(input_df2))
def test_build_pipeline(has_repeated_learners): df_train = pd.DataFrame({ 'id': ["id1", "id2", "id3", "id4", "id3", "id4"], 'x1': [10.0, 13.0, 10.0, 13.0, None, 13.0], "x2": [0, 1, 1, 0, 1, 0], "cat": ["c1", "c1", "c2", None, "c2", "c4"], 'y': [2.3, 4.0, 100.0, -3.9, 100.0, -3.9] }) df_test = pd.DataFrame({ 'id': ["id4", "id4", "id5", "id6", "id5", "id6"], 'x1': [12.0, 1000.0, -4.0, 0.0, -4.0, 0.0], "x2": [1, 1, 0, None, 0, 1], "cat": ["c1", "c2", "c5", None, "c2", "c3"], 'y': [1.3, -4.0, 0.0, 49, 0.0, 49] }) features = ["x1", "x2", "cat"] target = "y" train_fn = build_pipeline(placeholder_imputer(columns_to_impute=features, placeholder_value=-999), count_categorizer(columns_to_categorize=["cat"]), xgb_regression_learner(features=features, target=target, num_estimators=20, extra_params={"seed": 42}), has_repeated_learners=has_repeated_learners) predict_fn, pred_train, log = train_fn(df_train) pred_test_with_shap = predict_fn(df_test, apply_shap=True) assert set(pred_test_with_shap.columns) - set(pred_train.columns) == { "shap_values", "shap_expected_value" } pred_test_without_shap = predict_fn(df_test) assert set(pred_test_without_shap.columns) == set(pred_train.columns) pd.util.testing.assert_frame_equal( pred_test_with_shap[pred_test_without_shap.columns], pred_test_without_shap)
def test_build_pipeline_with_onehotencoder(has_repeated_learners): df_train = pd.DataFrame({ 'id': ["id1", "id2", "id3", "id4", "id3", "id4"], 'x1': [10.0, 13.0, 10.0, 13.0, None, 13.0], "x2": [0, 1, 1, 0, 1, 0], "cat": ["c1", "c1", "c2", None, "c2", "c4"], 'y': [2.3, 4.0, 100.0, -3.9, 100.0, -3.9] }) df_test = pd.DataFrame({ 'id': ["id4", "id4", "id5", "id6", "id5", "id6"], 'x1': [12.0, 1000.0, -4.0, 0.0, -4.0, 0.0], "x2": [1, 1, 0, None, 0, 1], "cat": ["c1", "c2", "c5", None, "c2", "c3"], 'y': [1.3, -4.0, 0.0, 49, 0.0, 49] }) features = ["x1", "x2", "cat"] target = "y" train_fn = build_pipeline( placeholder_imputer(columns_to_impute=["x1", "x2"], placeholder_value=-999), onehot_categorizer(columns_to_categorize=["cat"], hardcode_nans=True), xgb_regression_learner(features=features, target=target, num_estimators=20, extra_params={"seed": 42}), has_repeated_learners=has_repeated_learners) predict_fn, pred_train, log = train_fn(df_train) pred_test = predict_fn(df_test) expected_feature_columns_after_encoding = [ "x1", "x2", "fklearn_feat__cat==c1", "fklearn_feat__cat==c2", "fklearn_feat__cat==c4", "fklearn_feat__cat==nan" ] assert set( pred_test.columns) == set(expected_feature_columns_after_encoding + ["id", target, "prediction"])