예제 #1
0
def test_placeholder_imputer():
    input_df = pd.DataFrame({'col1': [10, 13, 10], 'col2': [50, 100, None]})

    input_df2 = pd.DataFrame({'col1': [10, None], 'col2': [None, 100]})

    expected1 = pd.DataFrame({
        'col1': [10, 13, 10],
        'col2': [50.0, 100.0, -999.0]
    })

    expected2 = pd.DataFrame({'col1': [10, -999.0], 'col2': [-999.0, 100]})

    pred_fn, data, log = placeholder_imputer(input_df, ["col1", "col2"], -999)

    assert expected1.equals(data)
    assert expected2.equals(pred_fn(input_df2))
예제 #2
0
def test_build_pipeline(has_repeated_learners):
    df_train = pd.DataFrame({
        'id': ["id1", "id2", "id3", "id4", "id3", "id4"],
        'x1': [10.0, 13.0, 10.0, 13.0, None, 13.0],
        "x2": [0, 1, 1, 0, 1, 0],
        "cat": ["c1", "c1", "c2", None, "c2", "c4"],
        'y': [2.3, 4.0, 100.0, -3.9, 100.0, -3.9]
    })

    df_test = pd.DataFrame({
        'id': ["id4", "id4", "id5", "id6", "id5", "id6"],
        'x1': [12.0, 1000.0, -4.0, 0.0, -4.0, 0.0],
        "x2": [1, 1, 0, None, 0, 1],
        "cat": ["c1", "c2", "c5", None, "c2", "c3"],
        'y': [1.3, -4.0, 0.0, 49, 0.0, 49]
    })

    features = ["x1", "x2", "cat"]
    target = "y"

    train_fn = build_pipeline(placeholder_imputer(columns_to_impute=features,
                                                  placeholder_value=-999),
                              count_categorizer(columns_to_categorize=["cat"]),
                              xgb_regression_learner(features=features,
                                                     target=target,
                                                     num_estimators=20,
                                                     extra_params={"seed":
                                                                   42}),
                              has_repeated_learners=has_repeated_learners)

    predict_fn, pred_train, log = train_fn(df_train)

    pred_test_with_shap = predict_fn(df_test, apply_shap=True)
    assert set(pred_test_with_shap.columns) - set(pred_train.columns) == {
        "shap_values", "shap_expected_value"
    }

    pred_test_without_shap = predict_fn(df_test)
    assert set(pred_test_without_shap.columns) == set(pred_train.columns)

    pd.util.testing.assert_frame_equal(
        pred_test_with_shap[pred_test_without_shap.columns],
        pred_test_without_shap)
예제 #3
0
def test_build_pipeline_with_onehotencoder(has_repeated_learners):
    df_train = pd.DataFrame({
        'id': ["id1", "id2", "id3", "id4", "id3", "id4"],
        'x1': [10.0, 13.0, 10.0, 13.0, None, 13.0],
        "x2": [0, 1, 1, 0, 1, 0],
        "cat": ["c1", "c1", "c2", None, "c2", "c4"],
        'y': [2.3, 4.0, 100.0, -3.9, 100.0, -3.9]
    })

    df_test = pd.DataFrame({
        'id': ["id4", "id4", "id5", "id6", "id5", "id6"],
        'x1': [12.0, 1000.0, -4.0, 0.0, -4.0, 0.0],
        "x2": [1, 1, 0, None, 0, 1],
        "cat": ["c1", "c2", "c5", None, "c2", "c3"],
        'y': [1.3, -4.0, 0.0, 49, 0.0, 49]
    })

    features = ["x1", "x2", "cat"]
    target = "y"

    train_fn = build_pipeline(
        placeholder_imputer(columns_to_impute=["x1", "x2"],
                            placeholder_value=-999),
        onehot_categorizer(columns_to_categorize=["cat"], hardcode_nans=True),
        xgb_regression_learner(features=features,
                               target=target,
                               num_estimators=20,
                               extra_params={"seed": 42}),
        has_repeated_learners=has_repeated_learners)

    predict_fn, pred_train, log = train_fn(df_train)

    pred_test = predict_fn(df_test)

    expected_feature_columns_after_encoding = [
        "x1", "x2", "fklearn_feat__cat==c1", "fklearn_feat__cat==c2",
        "fklearn_feat__cat==c4", "fklearn_feat__cat==nan"
    ]

    assert set(
        pred_test.columns) == set(expected_feature_columns_after_encoding +
                                  ["id", target, "prediction"])