def load_loblaws(self, product_json_dir: Path, scrape_date: str):

        CHANGE_REASON = 'New Loblaws Scrape Batch'
        json_files = list(product_json_dir.glob("*.json"))

        if len(json_files) < 1:
            self.stdout.write(
                self.style.ERROR(
                    f'Could not find any JSON files in {product_json_dir}, quitting!'
                ))
            quit()

        self.stdout.write(
            self.style.SUCCESS(
                f'Found {len(json_files)} JSON files in {product_json_dir}'))

        # Total valid products scraped
        filtered_json_files = [
            f for f in json_files if f.stat().st_size > 1000
        ]
        total_products = len(filtered_json_files)

        # All product codes
        product_codes = [f.with_suffix("").name for f in filtered_json_files]

        # All Loblaws products in the DB
        existing_products = [
            x.product.product_code for x in LoblawsProduct.objects.all()
        ]

        # Total number of products
        missing_products = len(
            list(set(existing_products) - set(product_codes)))
        new_products = len(
            [x for x in product_codes if x not in existing_products])

        # Create scrape batch
        scrape = ScrapeBatch.objects.create(missing_products=missing_products,
                                            new_products=new_products,
                                            total_products=total_products,
                                            scrape_date=scrape_date,
                                            store='LOBLAWS')

        # Iterate over product json files
        existing_codes_dict = Product.generate_existing_product_codes_dict(
            store='LOBLAWS')
        for j in tqdm(filtered_json_files, desc="Uploading JSON"):
            product_code = j.with_suffix(
                "").name  # Files are named after product code

            try:
                data = read_json(j)
            except json.decoder.JSONDecodeError as e:
                # self.stdout.write(self.style.ERROR(f'Skipping product JSON {j} due to exception:\n{e}'))
                continue

            # Get or create generic Product
            obj = Product.objects.create(product_code=product_code)
            obj.save()
            obj.changeReason = CHANGE_REASON

            # Get or create Loblaws Product
            product = LoblawsProduct.objects.create(product=obj)
            product.save()

            # Generic fields for Product model
            obj.store = 'LOBLAWS'

            # Normalize the apostrophes for name and brand
            obj.name = normalize_apostrophe(get_name(data))
            obj.brand = normalize_apostrophe(get_brand(data))

            price_float, price_units = get_price(data)
            obj.price_float, obj.price_units = price_float, price_units
            obj.price = f'${price_float} {price_units}'

            upc_list = get_upc_list(data)
            if upc_list is not None:
                obj.upc_code = upc_list[
                    0]  # Set the representative UPC code to the first entry in the list
                obj.upc_array = upc_list

            obj.manufacturer = None  # Not sure if we have this
            obj.nielsen_product = None  # TODO: Probably populate this post-hoc. Ask Adrian about this.
            obj.url = get_url(data)
            obj.scrape_date = timezone.now()
            obj.nutrition_available = None
            obj.breadcrumbs_array = get_breadcrumbs(data)
            obj.breadcrumbs_text = ",".join(get_breadcrumbs(data))
            obj.description = get_description(data)
            obj.batch = scrape

            # Update most_recent flag of older duplicate products if necessary
            if product_code in existing_codes_dict.values():
                ids_to_demote = Product.test_if_most_recent(
                    product_code=product_code,
                    existing_codes_dict=existing_codes_dict)
                Product.demote_most_recent_product_list(ids_to_demote)

            # Loblaws fields for LoblawsProduct model
            product.api_data = data
            nutrition_facts_json = get_nutrition_facts(data)
            product.changeReason = CHANGE_REASON

            # Populate NutritionFacts model
            nutrition_facts, c = NutritionFacts.objects.get_or_create(
                product=obj)
            nutrition_facts.load_total_size(data)
            nutrition_facts.ingredients = get_ingredients(data)

            if nutrition_facts_json is not None:
                nutrition_facts.load_loblaws_nutrition_facts_json(
                    nutrition_facts_json)
                obj.nutrition_available = True
            else:
                obj.nutrition_available = False

            if not c:
                nutrition_facts.changeReason = CHANGE_REASON

            # Commit to DB
            obj.save()
            product.save()
            nutrition_facts.save()

        self.stdout.write(
            self.style.SUCCESS(
                f'Done loading Loblaws-{str(scrape_date)} products to database!'
            ))

        self.stdout.write(
            self.style.SUCCESS(f'Conducting category assignment step'))
        assign_categories()

        self.stdout.write(
            self.style.SUCCESS(f'Conducting variety pack assignment step'))
        assign_variety_pack_flag()

        self.stdout.write(
            self.style.SUCCESS(f'Calculating Atwater result for products'))
        calculate_atwater()

        self.stdout.write(self.style.SUCCESS(f'Loading complete!'))
예제 #2
0
    def handle(self, *args, **options):
        if options['delete_products']:
            self.stdout.write(
                self.style.WARNING(
                    f'Deleting all Walmart products in the database...'))
            product_records = Product.objects.filter(store="WALMART")
            product_records.delete()
            self.stdout.write(
                self.style.ERROR(
                    f'Deleted all Walmart records in the database!'))
            quit()

        scrape_date = parse_date(options['date'])

        # Read main json file
        f = list(Path(options['input_dir']).glob('*.json'))[0]
        assert f.exists()
        j = read_json(str(f))

        # Get image directory
        tmp = list(Path(options['input_dir']).glob('*'))
        image_dir = [x for x in tmp if x.is_dir()][0]
        assert image_dir.exists()

        self.stdout.write(
            self.style.SUCCESS(
                f'Started loading Walmart products to database'))

        # Create scrape batch
        # All Walmart products in the DB
        existing_products = [
            x.product.product_code for x in WalmartProduct.objects.all()
        ]
        product_codes = [x['product_code'] for x in j]
        missing_products = len(
            list(set(existing_products) - set(product_codes)))
        new_products = len(
            [x for x in product_codes if x not in existing_products])
        total_products = len(j)

        # TODO: If the script fails this will still be created, should probably clean up after itself
        scrape = ScrapeBatch.objects.create(missing_products=missing_products,
                                            new_products=new_products,
                                            total_products=total_products,
                                            scrape_date=scrape_date,
                                            store='WALMART')

        self.stdout.write(
            self.style.SUCCESS(
                f'Created new scrape batch for {scrape.scrape_date}'))

        # Iterate over all products
        existing_codes_dict = Product.generate_existing_product_codes_dict(
            store='WALMART')
        for p in tqdm(j, desc="Loading Walmart JSON"):
            # Make sure all of the expected keys are populated at least with None.
            # Also rename the carbohydrate and carbohydrate_dv columns to match the DB
            for k in EXPECTED_KEYS:
                if k not in p:
                    p[k] = None

            product = Product.objects.create(product_code=p['product_code'])

            # Product fields
            product.name = normalize_apostrophe(p['product_name'])
            product.brand = normalize_apostrophe(p['Brand'])
            product.store = 'WALMART'

            # TODO: Make sure the UPC code is just the first entry
            if p['UPC'] is not None:
                first_upc_code = str(p['UPC']).split(',')[0]
                product.upc_code = first_upc_code
            product.url = p['url']

            product.description = p['long_desc']
            if p['breadcrumbs'] is not None:
                product.breadcrumbs_text = p['breadcrumbs'].strip()
                product.breadcrumbs_array = [
                    x.strip() for x in p['breadcrumbs'].strip().split('>')
                ]

            if p['price'] == 'price unavailable':
                product.price = 'price unavailable'
            elif p['price'] is not None:
                if '¢' in p['price']:
                    product.price_float = float(p['price'].replace('¢',
                                                                   '')) / 100
                elif '\u00a2' in p[
                        'price']:  # Weird character that represents cents
                    product.price_float = float(p['price'].replace(
                        '\u00a2', '')) / 100
                elif '$' in p['price']:
                    product.price_float = float(p['price'].replace('$', ''))
                product.price = p['price']
                product.price_units = "ea"  # TODO: This is just assumed because there is no value provided by the Walmart scraper

            product.nutrition_available = p['nft_present']
            product.nielsen_product = p['nielsen_product']
            product.unidentified_nft_format = p['nft_american']
            product.batch = scrape

            # Update most_recent flag of older duplicate products if necessary
            if product.product_code in existing_codes_dict.values():
                ids_to_demote = Product.test_if_most_recent(
                    product_code=product.product_code,
                    existing_codes_dict=existing_codes_dict)
                Product.demote_most_recent_product_list(ids_to_demote)

            # Change reason
            product.changeReason = CHANGE_REASON

            product.save()

            # Walmart fields
            walmart = WalmartProduct.objects.create(product=product)
            walmart.nutrition_facts_json = p['nutrition']
            if len(p['images']['image_paths']) > 0:
                walmart.image_directory = str(
                    Path(p['images']['image_paths'][0]).parent)
            else:
                walmart.image_directory = None
            walmart.dietary_info = p['Lifestyle & Dietary Need']
            walmart.bullets = p['bullets']
            walmart.sku = p['SKU']
            walmart.changeReason = CHANGE_REASON
            walmart.save()

            # Nutrition fields
            # Pass over the nutrition dict to replace 'absent' with 0 and 'conflict' with None
            nutrition_dict = p['nutrition'].copy()

            # Correct carbohydrate values to proper name to ensure fields match with database
            if "carbohydrate" in nutrition_dict.keys():
                nutrition_dict['totalcarbohydrate'] = nutrition_dict[
                    'carbohydrate']
            if "carbohydrate_dv" in nutrition_dict.keys():
                nutrition_dict['totalcarbohydrate_dv'] = nutrition_dict[
                    'carbohydrate_dv']
            if "carbohydrate_unit" in nutrition_dict.keys():
                nutrition_dict['totalcarbohydrate_unit'] = nutrition_dict[
                    'carbohydrate_unit']

            for key, val in nutrition_dict.items():
                # Override bad values with 0 or None
                if val == 'absent':
                    nutrition_dict[key] = 0
                if val == 'conflict':
                    nutrition_dict[key] = None

                # Convert any 'o' values to numeric 0. This is an OCR error.
                if '_dv' in key and val is not None:
                    if type(val) == str and val.lower() == 'o':
                        nutrition_dict[key] = 0
                    elif type(val) == str:
                        nutrition_dict[key] = None

            # Need to iterate through the nutrition dict and convert mg to grams, and dv/100
            for key, val in nutrition_dict.items():
                if '_unit' in key and val is not None:
                    if str(val).lower() == 'mg':
                        nutrient_to_adjust = key.replace('_unit', '')
                        if nutrition_dict[nutrient_to_adjust] is None:
                            continue
                        nutrition_dict[nutrient_to_adjust] = nutrition_dict[
                            nutrient_to_adjust] / 1000
                if '_dv' in key and val is not None:
                    nutrition_dict[key] = val / 100

            nutrition, c = NutritionFacts.objects.get_or_create(
                product=product)
            nutrition.ingredients = p['ingredients_txt']

            # TODO: There's a bug where the size value can just be a crazy string.
            #  Here's a temporary hack to get around it.
            if p['size'] is not None:
                if len(p['size']) < 100:
                    nutrition.total_size = p['size']
                else:
                    nutrition.total_size = None

            if not c:
                nutrition.changeReason = CHANGE_REASON

            # TODO: Verify Adrian's keys correspond with mine
            for key, val in nutrition_dict.items():
                if val is not None:
                    setattr(nutrition, key, val)

            # Serving size is weird. These keys are also not consistently in the nutrition dict.
            nutrition.serving_size_raw = None
            if 'serving_size' in nutrition_dict.keys(
            ) and 'serving_size_unit' in nutrition_dict.keys():
                nutrition.serving_size_raw = f'{nutrition_dict["serving_size"]} {nutrition_dict["serving_size_unit"]}'
            else:
                pass
                # self.stdout.write(self.style.WARNING(f'Issues detected with serving size values'))

            nutrition.serving_size = None
            if 'serving_size' in nutrition_dict.keys():
                nutrition.serving_size = nutrition_dict["serving_size"]

            nutrition.serving_size_units = None
            if 'serving_size_unit' in nutrition_dict.keys():
                nutrition.serving_size_units = nutrition_dict[
                    "serving_size_unit"]

            nutrition.save()

            # Images
            image_paths = p['images']['image_paths']
            image_labels = p['images']['image_labels']

            # Check if the product already has images associated with it
            existing_images = ProductImage.objects.filter(
                product__product_code=product.product_code)
            if len(existing_images) > 0:
                # print(f'Already have image records for {product}; skipping!')
                continue

            # Upload images if there are any
            if len(image_paths) > 0:
                for i, val in enumerate(image_paths):
                    # Note image_dir is the absolute path to the image directory
                    image_path = image_dir.parent / val
                    assert image_path.exists()
                    # Strip out media root so images behave correctly
                    image_path = str(image_path).replace(
                        settings.MEDIA_ROOT, '')
                    try:
                        image = ProductImage.objects.create(
                            product=product,
                            image_path=image_path,
                            image_label=image_labels[i],
                            image_number=i)
                        image.save()
                    # Skip if the file path already exists
                    except IntegrityError as e:
                        pass
        self.stdout.write(
            self.style.SUCCESS(
                f'Done loading Walmart-{str(scrape_date)} products to database!'
            ))

        self.stdout.write(
            self.style.SUCCESS(f'Conducting category assignment step'))
        assign_categories()

        self.stdout.write(
            self.style.SUCCESS(f'Conducting variety pack assignment step'))
        assign_variety_pack_flag()

        self.stdout.write(
            self.style.SUCCESS(f'Calculating Atwater result for products'))
        calculate_atwater()

        self.stdout.write(self.style.SUCCESS(f'Loading complete!'))