def forward(self, x): #x = self.dropout1(self.relu1(self.fc1(x))) #x = self.dropout2(self.relu2(self.fc2(x))) x = self.relu1(self.fc1(x)) x = self.relu2(self.fc2(x)) x = self.fc3(x) return x # if __name__ == '__main__': config = get_config() template_mesh = Mesh(filename='./flame_model/FLAME_sample.ply') renderer = vis_util.SMPLRenderer(faces=template_mesh.f) if not os.path.exists(config.out_folder): os.makedirs(config.out_folder) if not os.path.exists(config.out_folder + '/images'): os.mkdir(config.out_folder + '/images') main(config, template_mesh)
id_txt='subjects_id.txt', R=6, transform=composed_transforms) if need_evaluate: resnet50 = torch.load("./resnet50.pkl") else: resnet50 = models.resnet50(pretrained=True) resnet50.cuda() resnet50.fc = Identity() if need_evaluate: regression = torch.load("./model.pkl") else: regression = Regression() regression.cuda() config = get_config() flamelayer = FLAME(config) flamelayer.requires_grad_ = False flamelayer.cuda() # ringnet = SingleRingnet(resnet50, regression, flamelayer) # ringnet.apply(weight_init) # ringnet.cuda() optimizer_reg = torch.optim.Adam(regression.parameters(), lr=learning_rate) optimizer_res = torch.optim.Adam(resnet50.parameters(), lr=learning_rate) scheduler_reg = torch.optim.lr_scheduler.StepLR(optimizer_reg, step_size=5) scheduler_res = torch.optim.lr_scheduler.StepLR(optimizer_res, step_size=5) # img = dataset[0]['images'][0].permute(1,2,0).numpy() # img = dataset[0]['images'][0].permute(1,2,0)