예제 #1
0
def test_cpsd():
    plt.close('all')
    print()
    print(
        '>>>>>>>>>>>>>>>>>>> Test cpsd (Cross Spectral Power Density) <<<<<<<<<<<<<<<<<<<<<<<<'
    )
    flap.delete_data_object('*')

    print("**** Generating 8 random data, 1 million points each.")

    d = flap.get_data('TESTDATA',
                      name='TEST-1-[1-8]',
                      options={
                          'Signal': 'Random',
                          'Length': 1
                      },
                      object_name='TESTDATA')
    print("**** Calculating all cpsd")
    flap.cpsd('TESTDATA',
              options={
                  'Norm': True,
                  'Interval': 50,
                  'Log': True,
                  'Res': 10,
                  'Range': [100, 1e5]
              },
              output_name='TESTDATA_cpsd')
    flap.abs_value('TESTDATA_cpsd', output_name='TESTDATA_cpsd_abs')

    print(
        "**** Plotting coherency between channels 1-2 and its significance level."
    )
    plt.figure()
    flap.plot('TESTDATA_cpsd_abs',
              axes='Frequency',
              slicing={
                  'Row (Ref)': 1,
                  'Row': 2
              },
              options={
                  'Log y': True,
                  'Log x': True,
                  'Error': False
              })
    flap.error_value('TESTDATA_cpsd_abs').plot(slicing={
        'Row (Ref)': 1,
        'Row': 2
    })

    plt.figure()
    print(
        "**** Plotting mean coherence in 1e4-1e5 frequency range as a function of row index."
    )
    flap.slice_data('TESTDATA_cpsd_abs',
                    slicing={
                        'Frequency': flap.Intervals(1e4, 1e5)
                    },
                    summing={
                        'Frequency': 'Mean'
                    }).plot(axes='Row (Ref)', options={'Y sep': 1.5})
예제 #2
0
def test_get_data():
    
    try:
        flap.get_data('CAMERA_APSD')
        apsd_available =  True
    except:
        apsd_available = False
    
    if (not apsd_available):    
        try:
    #       flap.get_data('W7X_CAMERA',exp_id="20181018.032", name="AEQ20_EDICAM_ROIP1", coordinates={'Time':[3,4]}, object_name="EDI_ROIP1")
           flap.get_data('W7X_CAMERA',
                         exp_id="20181018.012", 
                         name="AEQ21_PHOTRON_ROIP1",  
                         coordinates={'Time':[6.05,6.25]},
                         no_data=False, 
                         object_name="CAMERA")        
        except Exception  as e:
            raise e
        flap.list_data_objects()
        
    #    flap.plot("CAMERA",plot_type='anim-image',axes=['Image y','Image x','Time'],options={'Wait':0.01,'Clear':True}) 
        print("Slicing start")
        flap.slice_data('CAMERA',
                        slicing={'Image x':flap.Intervals(0,4,step=5),'Image y':flap.Intervals(0,4,step=5)},
                        summing={'Interval(Image x) sample index':'Mean','Interval(Image y) sample index':'Mean'},
                        output_name='CAMERA_sliced')
        print("Slicing stop") 
    #    flap.plot("CAMERA_sliced",
    #              plot_type='anim-image',
    #              axes=['Start Image y in int(Image y)','Start Image x in int(Image x)','Time'],
    #              options={'Wait':0.01,'Clear':True, 'Z range':[0,3000]})
        print("*** APSD start")
        start = time.time()
        flap.apsd("CAMERA_sliced",coordinate='Time',options={'Res':200,'Range':[0,1e4]},output_name='CAMERA_APSD')
        stop = time.time()
        print('**** APSD STOP')
        print("**** Calculation time: {:5.2f} second".format(stop-start))
        plt.close('all')
#    flap.plot('CAMERA_APSD',
#              slicing={'Start Image y in int(Image y)':50},
#              plot_type='image',
#              axes=['Frequency','Start Image x in int(Image x)'],
#              options={'Z range':[0,5],'Aspect':'auto'})
#    plt.figure()
    return
    flap.plot('CAMERA_APSD',
              plot_type='anim-image',
              axes=['Frequency','Start Image x in int(Image x)','Start Image y in int(Image y)'],
              options={'Z range':[0,5],'Aspect':'auto','Wait':0.1})
    
    flap.list_data_objects()
예제 #3
0
def test_binning():
    print()
    print()
    print('>>>>>>> Test image binning through multi-slice<<<<<<<<<<<')
    print("**** Generating a sequence of test images")
    flap.get_data('TESTDATA',
                  name='VIDEO',
                  object_name='TEST_VIDEO',
                  options={
                      'Length': 0.05,
                      'Samplerate': 1e3,
                      'Width': 500,
                      'Height': 800,
                      'Image': 'Gauss',
                      'Spotsize': 10
                  })
    print("***** Showing one image")
    plt.figure()
    flap.plot('TEST_VIDEO',
              slicing={'Time': 30e-3 / 3},
              plot_type='image',
              axes=['Image x', 'Image y'],
              options={
                  'Clear': True,
                  'Interpolation': None,
                  'Aspect': 'equal'
              })
    flap.slice_data('TEST_VIDEO',
                    slicing={
                        'Image x': flap.Intervals(0, 4, step=5),
                        'Image y': flap.Intervals(0, 9, step=10)
                    },
                    summing={
                        'Interval(Image x) sample index': 'Mean',
                        'Interval(Image y) sample index': 'Mean'
                    },
                    output_name='TEST_VIDEO_binned')
    print("***** Showing one image of the (5,10) binned video ")
    plt.figure()
    flap.plot('TEST_VIDEO_binned',
              slicing={'Time': 30e-3 / 3},
              plot_type='image',
              axes=['Image x', 'Image y'],
              options={
                  'Clear': True,
                  'Interpolation': None,
                  'Aspect': 'equal'
              })
    flap.list_data_objects()
예제 #4
0
def test_select_multislice():
    plt.close('all')
    print()
    print(
        '>>>>>>>>>>>>>>>>>>> Test select on maxima and multi slice <<<<<<<<<<<<<<<<<<<<<<<<'
    )
    flap.delete_data_object('*')
    d = flap.get_data('TESTDATA',
                      name='TEST-1-1',
                      object_name='TEST-1-1',
                      options={'Length': 0.050})
    print(
        "**** Selecting 100 microsec long intervals around the maxima of the signal."
    )
    d_int = flap.select_intervals('TEST-1-1',
                                  coordinate='Time',
                                  options={
                                      'Select': None,
                                      'Length': 0.0001,
                                      'Event': {
                                          'Type': 'Max-weight',
                                          'Threshold': 1,
                                          'Thr-type': 'Sigma'
                                      }
                                  },
                                  plot_options={'All points': True},
                                  output_name='SELECT')
    flap.list_data_objects()
    d_int.plot(axes=['__Data__', 0],
               plot_type='scatter',
               options={'Force': True})
    if (d_int is not None):
        print("**** Overplotting the signals in the selected intervals.")
        flap.slice_data('TEST-1-1',
                        slicing={'Time': d_int},
                        output_name='TEST-1-1_sliced')
        flap.list_data_objects()
        plt.figure()
        n_int = d_int.shape[0]
        for i in range(n_int):
            flap.plot('TEST-1-1_sliced',
                      slicing={'Interval(Time)': i},
                      axes='Rel. Time in int(Time)')
예제 #5
0
def test_simple_slice():
    print()
    print("\n>>>>>>>>>>>>>>>>>>> Test simple slice <<<<<<<<<<<<<<<<<<<<<<<<")
    flap.delete_data_object('*')
    print("**** Reading all test signals for time range [0,0.001]")
    d = flap.get_data('TESTDATA',
                      name='TEST-*',
                      options={'Scaling': 'Volt'},
                      object_name='TESTDATA',
                      coordinates={'Time': [0, 0.001]})
    print("**** Adding Device coordinates")
    flap.add_coordinate('TESTDATA',
                        coordinates=['Device x', 'Device z', 'Device y'])
    print("**** Storage contents before slice")
    flap.list_data_objects()
    print("**** Slicing with {'Signal name': 'TEST-1-*'}")
    flap.slice_data('TESTDATA',
                    slicing={'Signal name': 'TEST-1-*'},
                    output_name='TESTDATA_slice')
    print("**** Sliced object")
    flap.list_data_objects(name='TESTDATA_slice')
예제 #6
0
def test_resample():
    plt.close('all')
    print()
    print(">>>>>>>>>>>>> Test signal resampling (interpolation) <<<<<<<<<<<")
    flap.delete_data_object('*')
    print(
        "**** Generating two test signals with different sampling frequency.")
    flap.get_data('TESTDATA',
                  name='TEST-1-1',
                  options={
                      'Scaling': 'Volt',
                      'Frequency': 1e3,
                      'Samplerate': 1e6
                  },
                  object_name='TEST-1MHz',
                  coordinates={'Time': [0, 0.001]})
    flap.get_data('TESTDATA',
                  name='TEST-1-1',
                  options={
                      'Scaling': 'Volt',
                      'Frequency': 1.5e3,
                      'Samplerate': 3e6
                  },
                  object_name='TEST-3MHz',
                  coordinates={'Time': [0, 0.001]})
    print("\n***** Resampling from lower to higher frequency.")
    plt.figure()
    flap.plot('TEST-1MHz', axes='Time', plot_options={'marker': 'o'})
    flap.plot('TEST-3MHz', plot_options={'marker': 'o'})
    flap.slice_data('TEST-1MHz',
                    slicing={'Time': flap.get_data_object('TEST-3MHz')},
                    options={'Interpol': 'Linear'},
                    output_name='TEST-1MHz_resample')
    flap.plot('TEST-1MHz_resample', plot_options={'marker': 'x'})

    print("\n***** Resampling from higher to lower frequency.")
    plt.figure()
    flap.plot('TEST-1MHz', axes='Time', plot_options={'marker': 'o'})
    flap.plot('TEST-3MHz', plot_options={'marker': 'o'})
    flap.slice_data('TEST-3MHz',
                    slicing={'Time': flap.get_data_object('TEST-1MHz')},
                    options={'Interpol': 'Linear'},
                    output_name='TEST-3MHz_resample')
    flap.plot('TEST-3MHz_resample', plot_options={'marker': 'x'})

    print("\n***** Cutting parts.")
    plt.figure()
    flap.slice_data(
        'TEST-1MHz',
        slicing={'Time': flap.Intervals([1e-4, 5e-4], [2e-4, 7e-4])},
        options={'Slice': 'Simple'},
        output_name='TEST-1MHz_parts')
    flap.plot('TEST-1MHz_parts', axes='Time', plot_options={'marker': 'o'})
    flap.list_data_objects()
예제 #7
0
def test_apsd():
    plt.close('all')
    print()
    print(
        '>>>>>>>>>>>>>>>>>>> Test apsd (Auto Power Spectral Density) <<<<<<<<<<<<<<<<<<<<<<<<'
    )
    flap.delete_data_object('*')
    #plt.close('all')
    print(
        '**** Generating test signals with frequency changing from channel to channel.'
    )
    d = flap.get_data('TESTDATA',
                      name='TEST*',
                      object_name='TEST-1_S',
                      options={
                          'Signal': 'Sin',
                          'F': [1e3, 1e4],
                          'Length': 1.
                      })
    print('**** Calculating 150 APSDs, each 1 million sample.')
    print('**** APSD START')
    start = time.time()
    flap.apsd('TEST-1_S',
              output_name='TEST-1_APSD_Sin1',
              options={
                  'Res': 12,
                  'Int': 10
              })
    stop = time.time()
    print('**** APSD STOP')
    print("**** Calculation time: {:5.2f} second/signal".format(
        (stop - start) / 150.))
    plt.figure()
    flap.plot('TEST-1_APSD_Sin1',
              slicing={'Row': 1},
              axes='Frequency',
              options={
                  'All': True,
                  'X range': [0, 5e3]
              })
    plt.title('TEST-1-1_APSD_Sin1')

    print("**** Testing with a complex signal.")
    flap.delete_data_object('*')
    d = flap.get_data('TESTDATA',
                      name='TEST-1-1',
                      object_name='TEST-1-1_CS',
                      options={'Signal': 'Complex-Sin'})
    flap.apsd('TEST-1-1_CS',
              coordinate='Time',
              output_name='TEST-1-1_APSD_Complex-Sin',
              options={
                  'Res': 10,
                  'Range': [-1e5, 1e5]
              })
    flap.slice_data('TEST-1-1_APSD_Complex-Sin',
                    slicing={'Frequency': flap.Intervals(-5e3, 5e3)},
                    output_name='TEST-1-1_APSD_Complex-Sin_sliced')
    flap.list_data_objects()
    plt.figure()
    flap.plot('TEST-1-1_APSD_Complex-Sin_sliced',
              axes='Frequency',
              options={'All': True})
    plt.title('TEST-1-1_APSD_Complex-Sin_sliced')

    print(
        "**** Testing interval selection in apsd. APSD from 8 intervals, each 80 ms long."
    )
    d = flap.get_data('TESTDATA',
                      name='TEST-1-1',
                      object_name='TEST-1-1',
                      options={
                          'Signal': 'Sin',
                          'Length': 1
                      })
    intervals = flap.Intervals(0, 0.08, step=0.1, number=8)
    flap.apsd('TEST-1-1',
              output_name='TEST-1-1_APSD',
              intervals=intervals,
              options={
                  'Res': 12,
                  'Int': 10
              })
    plt.figure()
    flap.plot('TEST-1-1_APSD', options={'X range': [0, 5e3]})
예제 #8
0
def calculate_nstx_gpi_crosscorrelation(exp_id=None,
                                        time_range=None,
                                        add_flux=None,
                                        reference_pixel=None,
                                        reference_flux=None,
                                        reference_position=None,
                                        reference_area=None,
                                        filter_low=None,
                                        filter_high=None,
                                        filter_design='Chebyshev II',
                                        trend=['Poly',2],
                                        frange=None,
                                        taurange=[-500e-6,500e-6],
                                        taures=2.5e-6,
                                        interval_n=11,
                                        filename=None,
                                        options=None,
                                        cache_data=False,
                                        normalize_signal=False,
                                        normalize=True,           #Calculate correlation if True (instead of covariance)
                                        plot=False,
                                        plot_acf=False,
                                        axes=['Image x', 'Image y', 'Time lag']
                                        ):
    
    if time_range is None:
        print('The time range needs to set for the calculation.')
        print('There is no point of calculating the entire time range.')
        return
    else:    
        if (type(time_range) is not list and len(time_range) != 2):
            raise TypeError('time_range needs to be a list with two elements.')
    if exp_id is not None:
        print("\n------- Reading NSTX GPI data --------")
        if cache_data:
            try:
                d=flap.get_data_object_ref(exp_id=exp_id,object_name='GPI')
            except:
                print('Data is not cached, it needs to be read.')
                d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
        else:
            d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
    else:
        raise ValueError('The experiment ID needs to be set.')
        
    if reference_flux is not None or add_flux:
        d.add_coordinate(coordinates='Flux r',exp_id=exp_id)
    
    #Normalize the data for the maximum cloud distribution
    if normalize_signal:
        normalizer=flap_nstx.analysis.calculate_nstx_gpi_norm_coeff(exp_id=exp_id,             # Experiment ID
                                                                     f_high=1e2,                # Low pass filter frequency in Hz
                                                                     design=filter_design,      # IIR filter design (from scipy)
                                                                     test=False,                # Testing input
                                                                     filter_data=True,          # IIR LPF the data
                                                                     time_range=None,           # Timer range for the averaging in ms [t1,t2]
                                                                     calc_around_max=False,     # Calculate the average around the maximum of the GPI signal
                                                                     time_window=50.,           # The time window for the calc_around_max calculation
                                                                     cache_data=True,           
                                                                     verbose=False,
                                                                     )
        d.data = d.data/normalizer.data #This should be checked to some extent, it works with smaller matrices
    
    #SLicing data to the input time range    
    flap.slice_data('GPI',exp_id=exp_id,
                    slicing={'Time':flap.Intervals(time_range[0],time_range[1])},
                    output_name='GPI_SLICED')
    
    #Filtering the signal since we are in time-space not frequency space
    if frange is not None:
        filter_low=frange[0]
        filter_high=frange[1]
    if filter_low is not None or filter_high is not None:
        if filter_low is not None and filter_high is None:
            filter_type='Highpass'
        if filter_low is None and filter_high is not None:
            filter_type='Lowpass'
        if filter_low is not None and filter_high is not None:
            filter_type='Bandpass'

        flap.filter_data('GPI_SLICED',exp_id=exp_id,
                         coordinate='Time',
                         options={'Type':filter_type,
                                  'f_low':filter_low,
                                  'f_high':filter_high, 
                                  'Design':filter_design},
                         output_name='GPI_SLICED_FILTERED')

    if reference_pixel is None and reference_position is None and reference_flux is None:
        calculate_acf=True
    else:
        calculate_acf=False
                
    if not calculate_acf:
        flap_nstx.analysis.calculate_nstx_gpi_reference('GPI_SLICED_FILTERED', exp_id=exp_id,
                                                         reference_pixel=reference_pixel,
                                                         reference_area=reference_area,
                                                         reference_position=reference_position,
                                                         reference_flux=reference_flux,
                                                         output_name='GPI_REF')
        
        flap.ccf('GPI_SLICED_FILTERED',exp_id=exp_id,
                  ref='GPI_REF',
                  coordinate='Time',
                  options={'Resolution':taures,
                           'Range':taurange,
                           'Trend':trend,
                           'Interval':interval_n,
                           'Normalize':normalize,
                           },
                   output_name='GPI_CCF')
        
    if plot:
        if not plot_acf:
            object_name='GPI_CCF'
        else:
            object_name='GPI_ACF'
            
            flap.plot(object_name, exp_id=exp_id,
                      plot_type='animation', 
                      axes=axes, 
                      options={'Plot units': {'Time lag':'us'}, 
                               'Z range':[0,1]},)     
예제 #9
0
import flap_nstx
from flap_nstx.analysis import *

flap_nstx.register()
import flap_mdsplus
flap_mdsplus.register('NSTX_MDSPlus')
thisdir = os.path.dirname(os.path.realpath(__file__))
fn = os.path.join(thisdir,"flap_nstx.cfg")
flap.config.read(file_name=fn)  
import scipy

exp_id=139901
time_range=[0.307,0.308]

flap.get_data('NSTX_GPI', exp_id=exp_id,name='',object_name='GPI')
d=flap.slice_data('GPI', slicing={'Time':flap.Intervals(time_range[0],time_range[1])})
sample0=d.coordinate('Sample')[0][0,0,0]
frame_a=np.asarray(flap.slice_data('GPI', slicing={'Sample':sample0}, output_name='GPI_FRAME1').data, dtype='float32')
frame_b=np.asarray(flap.slice_data('GPI', slicing={'Sample':sample0+1}, output_name='GPI_FRAME2').data, dtype='float32')

winsize = 10 # pixels
searchsize = 10  # pixels, search in image B
overlap = 5 # pixels
dt = 2.5e-6 # sec


u0, v0, sig2noise = process.extended_search_area_piv(frame_a.astype(np.int32), 
                                                     frame_b.astype(np.int32), 
                                                     window_size=winsize, 
                                                     overlap=overlap, 
                                                     dt=dt, 
예제 #10
0
def show_nstx_gpi_video(exp_id=None,                                            #Shot number
                        time_range=None,                                        #Time range to show the video in, if not set, the enire shot is shown
                        z_range=None,                                           #Range for the contour/color levels, if not set, min-max is divided
                        logz=False,                                             #Plot the image in a logarithmic coloring
                        plot_filtered=False,                                    #Plot a high pass (100Hz) filtered video
                        normalize=None,                                         #Normalize the video by dividing it with a processed GPI signal 
                                                                                #    options: 'Time dependent' (LPF filtered) (recommended)
                                                                                #             'Time averaged' (LPF filtered and averaged for the time range) 
                                                                                #             'Simple' (Averaged)
                        normalizer_time_range=None,                             #Time range for the time dependent normalization
                        subtract_background=False,                              #Subtract the background from the image (mean of the time series)
                        plot_flux=False,                                        #Plot the flux surfaces onto the video
                        plot_separatrix=False,                                  #Plot the separatrix onto the video
                        plot_limiter=False,                                     #Plot the limiter of NSTX from EFIT
                        flux_coordinates=False,                                 #Plot the signal as a function of magnetic coordinates
                        device_coordinates=False,                               #Plot the signal as a function of the device coordinates
                        new_plot=True,                                          #Plot the video into a new figure window
                        save_video=False,                                       #Save the video into an mp4 format
                        video_saving_only=False,                                #Saving only the video, not plotting it
                        prevent_saturation=False,                               #Prevent saturation of the image by restarting the colormap
                        colormap='gist_ncar',                                   #Colormap for the plotting
                        cache_data=True,                                       #Try to load the data from the FLAP storage
                        ):                
        
    if exp_id is not None:
        print("\n------- Reading NSTX GPI data --------")
        if cache_data:
            try:
                d=flap.get_data_object_ref(exp_id=exp_id,object_name='GPI')
            except:
                print('Data is not cached, it needs to be read.')
                d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
        else:
            d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
        object_name='GPI'
    else:
        raise ValueError('The experiment ID needs to be set.')
        
    if time_range is None:
        print('time_range is None, the entire shot is plotted.')
        slicing=None
    else:    
        if (type(time_range) is not list and len(time_range) != 2):
            raise TypeError('time_range needs to be a list with two elements.')
        #time_range=[time_range[0]/1000., time_range[1]/1000.] 
        slicing={'Time':flap.Intervals(time_range[0],time_range[1])}
        d=flap.slice_data(object_name, 
                          exp_id=exp_id,
                          slicing=slicing, 
                          output_name='GPI_SLICED')
        object_name='GPI_SLICED'
        
    if plot_filtered:
        print("**** Filtering GPI ****")
        
        d=flap.filter_data(object_name,
                           exp_id=exp_id,
                           output_name='GPI_FILTERED',coordinate='Time',
                           options={'Type':'Highpass',
                                    'f_low':1e2,
                                    'Design':'Chebyshev II'})
        object_name='GPI_FILTERED'
        
    if normalize is not None:
        print("**** Normalizing GPI ****")
        d=flap.get_data_object_ref(object_name)
        if normalize in ['Time averaged','Time dependent', 'Simple']:
            if normalize == 'Time averaged':
                coefficient=flap_nstx.analysis.calculate_nstx_gpi_norm_coeff(exp_id=exp_id,
                                                          time_range=normalizer_time_range,
                                                          f_high=1e2,
                                                          design='Chebyshev II',
                                                          filter_data=True,
                                                          cache_data=True,
                                                          )
            if normalize == 'Time dependent':
                coefficient=flap.filter_data('GPI',
                                             exp_id=exp_id,
                                             output_name='GPI_LPF',
                                             coordinate='Time',
                                             options={'Type':'Lowpass',
                                                      'f_high':1e2,
                                                      'Design':'Chebyshev II'})
                if slicing is not None:
                    coefficient=coefficient.slice_data(slicing=slicing)
            if normalize == 'Simple':
                coefficient=flap.slice_data(object_name,summing={'Time':'Mean'})
                
            data_obj=copy.deepcopy(d)
            data_obj.data = data_obj.data/coefficient.data
            flap.add_data_object(data_obj, 'GPI_DENORM')
            object_name='GPI_DENORM'
        else:
            raise ValueError('Normalize can either be "Time averaged","Time dependent" or "Simple".')
            
    if subtract_background: #DEPRECATED, DOESN'T DO MUCH HELP
        print('**** Subtracting background ****')
        d=flap.get_data_object_ref(object_name, exp_id=exp_id)
        background=flap.slice_data(object_name, 
                                   exp_id=exp_id,
                                   summing={'Time':'Mean'})
        
        data_obj=copy.deepcopy(d)
        data_obj.data=data_obj.data/background.data
        
        flap.add_data_object(data_obj, 'GPI_BGSUB')
        object_name='GPI_BGSUB'    
    if ((plot_flux or plot_separatrix) and not flux_coordinates):
        print('Gathering MDSPlus EFIT data.')
        oplot_options={}
        if plot_separatrix:
            flap.get_data('NSTX_MDSPlus',
                          name='\EFIT01::\RBDRY',
                          exp_id=exp_id,
                          object_name='SEP X OBJ'
                          )
    
            flap.get_data('NSTX_MDSPlus',
                          name='\EFIT01::\ZBDRY',
                          exp_id=exp_id,
                          object_name='SEP Y OBJ'
                          )
            
            oplot_options['path']={'separatrix':{'Data object X':'SEP X OBJ',
                                                 'Data object Y':'SEP Y OBJ',
                                                 'Plot':True,
                                                 'Color':'red'}}
            
        if plot_flux:
            d=flap.get_data('NSTX_MDSPlus',
                            name='\EFIT02::\PSIRZ',
                            exp_id=exp_id,
                            object_name='PSI RZ OBJ'
                            )
            oplot_options['contour']={'flux':{'Data object':'PSI RZ OBJ',
                                              'Plot':True,
                                              'Colormap':None,
                                              'nlevel':51}}
        #oplot_options['line']={'trial':{'Horizontal':[[0.200,'red'],[0.250,'blue']],
        #                                'Vertical':[[1.450,'red'],[1.500,'blue']],
        #                                'Plot':True
        #                               }}
            
    else:
        oplot_options=None
        
    if flux_coordinates:
        print("**** Adding Flux r coordinates")
        d.add_coordinate(coordinates='Flux r',exp_id=exp_id)
        x_axis='Flux r'
        y_axis='Device z'
        if plot_separatrix:
            oplot_options={}
            oplot_options['line']={'separatrix':{'Vertical':[[1.0,'red']],
                                                 'Plot':True}}
    elif device_coordinates:
        x_axis='Device R'
        y_axis='Device z'
    else:
        x_axis='Image x'
        y_axis='Image y'
    if new_plot:
        plt.figure()
        
    if save_video:
        if time_range is not None:
            video_filename='NSTX_GPI_'+str(exp_id)+'_'+str(time_range[0])+'_'+str(time_range[1])+'.mp4'
        else:
            video_filename='NSTX_GPI_'+str(exp_id)+'_FULL.mp4'
    else:
        video_filename=None
        
    if video_saving_only:
        save_video=True
        
    if z_range is None:
        d=flap.get_data_object_ref(object_name, exp_id=exp_id)
        z_range=[d.data.min(),d.data.max()]
        
    if z_range[1] < 0:
        raise ValueError('All the values are negative, Logarithmic plotting is not allowed.')
        
    if logz and z_range[0] <= 0:
        print('Z range should not start with 0 when logarithmic Z axis is set. Forcing it to be 1 for now.')
        z_range[0]=1.    
    
    if not save_video:
        flap.plot(object_name,plot_type='animation',
                  exp_id=exp_id,
                  axes=[x_axis,y_axis,'Time'],
                  options={'Z range':z_range,'Wait':0.0,'Clear':False,
                           'Overplot options':oplot_options,
                           'Colormap':colormap,
                           'Log z':logz,
                           'Equal axes':True,
                           'Prevent saturation':prevent_saturation,
                           'Plot units':{'Time':'s',
                                         'Device R':'m',
                                         'Device z':'m'}
                           })
    else:
        if video_saving_only:
            import matplotlib
            current_backend=matplotlib.get_backend()
            matplotlib.use('agg')
            waittime=0.
        else:
            waittime=1./24.
            waittime=0.
        flap.plot(object_name,plot_type='anim-image',
                  exp_id=exp_id,
                  axes=[x_axis,y_axis,'Time'],
                  options={'Z range':z_range,'Wait':0.0,'Clear':False,
                           'Overplot options':oplot_options,
                           'Colormap':colormap,
                           'Equal axes':True,
                           'Waittime':waittime,
                           'Video file':video_filename,
                           'Video format':'mp4',
                           'Prevent saturation':prevent_saturation,
                           })
        if video_saving_only:
            import matplotlib
            matplotlib.use(current_backend)
예제 #11
0
def show_nstx_gpi_video_frames(exp_id=None, 
                               time_range=None,
                               start_time=None,
                               n_frame=20,
                               logz=False,
                               z_range=[0,512],
                               plot_filtered=False, 
                               normalize=False,
                               cache_data=False, 
                               plot_flux=False, 
                               plot_separatrix=False, 
                               flux_coordinates=False,
                               device_coordinates=False,
                               new_plot=True,
                               save_pdf=False,
                               colormap='gist_ncar',
                               save_for_paraview=False,
                               colorbar_visibility=True
                               ):
    
    if time_range is None and start_time is None:
        print('time_range is None, the entire shot is plotted.')
    if time_range is not None:    
        if (type(time_range) is not list and len(time_range) != 2):
            raise TypeError('time_range needs to be a list with two elements.')
    if start_time is not None:
        if type(start_time) is not int and type(start_time) is not float:
            raise TypeError('start_time needs to be a number.')
    if not cache_data: #This needs to be enhanced to actually cache the data no matter what
        flap.delete_data_object('*')
    if exp_id is not None:
        print("\n------- Reading NSTX GPI data --------")
        if cache_data:
            try:
                d=flap.get_data_object_ref(exp_id=exp_id,object_name='GPI')
            except:
                print('Data is not cached, it needs to be read.')
                d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
        else:
            d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
        object_name='GPI'
    else:
        raise ValueError('The experiment ID needs to be set.')
    if time_range is None:
        time_range=[start_time,start_time+n_frame*2.5e-6]
    if normalize:
        
        flap.slice_data(object_name, 
                        slicing={'Time':flap.Intervals(time_range[0]-1/1e3*10,
                                                       time_range[1]+1/1e3*10)},
                        output_name='GPI_SLICED_FOR_FILTERING')
        
        norm_obj=flap.filter_data('GPI_SLICED_FOR_FILTERING',
                                  exp_id=exp_id,
                                  coordinate='Time',
                                  options={'Type':'Lowpass',
                                           'f_high':1e3,
                                           'Design':'Elliptic'},
                                  output_name='GAS_CLOUD')
        
        norm_obj.data=np.flip(norm_obj.data,axis=0)
        norm_obj=flap.filter_data('GAS_CLOUD',
                                  exp_id=exp_id,
                                  coordinate='Time',
                                  options={'Type':'Lowpass',
                                           'f_high':1e3,
                                           'Design':'Elliptic'},
                                 output_name='GAS_CLOUD')
        
        norm_obj.data=np.flip(norm_obj.data,axis=0)                
        coefficient=flap.slice_data('GAS_CLOUD',
                                    exp_id=exp_id,
                                    slicing={'Time':flap.Intervals(time_range[0],time_range[1])},
                                    output_name='GPI_GAS_CLOUD').data
                                    
        data_obj=flap.slice_data('GPI', 
                                 exp_id=exp_id,
                                 slicing={'Time':flap.Intervals(time_range[0],time_range[1])})
        data_obj.data = data_obj.data/coefficient
        flap.add_data_object(data_obj, 'GPI_SLICED_DENORM')
        object_name='GPI_SLICED_DENORM'
                        
    if plot_filtered:
        print("**** Filtering GPI")
        object_name='GPI_FILTERED'
        try:
            flap.get_data_object_ref(object_name, exp_id=exp_id)
        except:
            flap.filter_data(object_name,
                             exp_id=exp_id,
                             coordinate='Time',
                             options={'Type':'Highpass',
                                      'f_low':1e2,
                                      'Design':'Chebyshev II'},
                             output_name='GPI_FILTERED') #Data is in milliseconds                                
    if plot_flux or plot_separatrix:
        print('Gathering MDSPlus EFIT data.')
        oplot_options={}
        if plot_separatrix:
            flap.get_data('NSTX_MDSPlus',
                          name='\EFIT01::\RBDRY',
                          exp_id=exp_id,
                          object_name='SEP X OBJ'
                          )
    
            flap.get_data('NSTX_MDSPlus',
                          name='\EFIT01::\ZBDRY',
                          exp_id=exp_id,
                          object_name='SEP Y OBJ'
                          )
        if plot_flux:
            d=flap.get_data('NSTX_MDSPlus',
                            name='\EFIT01::\PSIRZ',
                            exp_id=exp_id,
                            object_name='PSI RZ OBJ'
                            )
        x_axis='Device R'
        y_axis='Device z'
    else:
        oplot_options=None
    if flux_coordinates:
        print("**** Adding Flux r coordinates")
        d.add_coordinate(coordinates='Flux r',exp_id=exp_id)
        x_axis='Flux r'
        y_axis='Device z'
    elif device_coordinates:
        x_axis='Device R'
        y_axis='Device z'
    if (not device_coordinates and 
        not plot_separatrix and 
        not flux_coordinates):
        x_axis='Image x'
        y_axis='Image y'        
    if start_time is not None:
        start_sample_num=flap.slice_data(object_name, 
                                         slicing={'Time':start_time}).coordinate('Sample')[0][0,0]
    if n_frame == 30:
        ny=6
        nx=5
    if n_frame == 20:
        ny=5
        nx=4
    gs=GridSpec(nx,ny)
    for index_grid_x in range(nx):
        for index_grid_y in range(ny):
            
            plt.subplot(gs[index_grid_x,index_grid_y])
            
            if start_time is not None:
                slicing={'Sample':start_sample_num+index_grid_x*ny+index_grid_y}
            else:
                time=time_range[0]+(time_range[1]-time_range[0])/(n_frame-1)*(index_grid_x*ny+index_grid_y)
                slicing={'Time':time}
            d=flap.slice_data(object_name, slicing=slicing, output_name='GPI_SLICED')
            slicing={'Time':d.coordinate('Time')[0][0,0]}
            if plot_flux:
                flap.slice_data('PSI RZ OBJ',slicing=slicing,output_name='PSI RZ SLICE',options={'Interpolation':'Linear'})
                oplot_options['contour']={'flux':{'Data object':'PSI RZ SLICE',
                                                  'Plot':True,
                                                  'Colormap':None,
                                                  'nlevel':51}}
                
            if plot_separatrix:
                flap.slice_data('SEP X OBJ',slicing=slicing,output_name='SEP X SLICE',options={'Interpolation':'Linear'})
                flap.slice_data('SEP Y OBJ',slicing=slicing,output_name='SEP Y SLICE',options={'Interpolation':'Linear'})
                oplot_options['path']={'separatrix':{'Data object X':'SEP X SLICE',
                                                     'Data object Y':'SEP Y SLICE',
                                                     'Plot':True,
                                                     'Color':'red'}}
            visibility=[True,True]
            if index_grid_x != nx-1:
                visibility[0]=False
            if index_grid_y != 0:
                visibility[1]=False
            flap.plot('GPI_SLICED',
                      plot_type='contour',
                      exp_id=exp_id,
                      axes=[x_axis,y_axis,'Time'],
                      options={'Z range':z_range,
                               'Interpolation': 'Closest value',
                               'Clear':False,
                               'Equal axes':True,
                               'Plot units':{'Device R':'m',
                                             'Device z':'m'},
                               'Axes visibility':visibility,
                               'Colormap':colormap,
                               'Colorbar':colorbar_visibility,
                               'Overplot options':oplot_options,
                               },
                       plot_options={'levels':255},
                       )
            actual_time=d.coordinate('Time')[0][0,0]
            #plt.title(str(exp_id)+' @ '+f"{actual_time*1000:.4f}"+'ms')
            plt.title(f"{actual_time*1000:.3f}"+'ms')
    if save_pdf:
        if time_range is not None:
            plt.savefig('NSTX_GPI_video_frames_'+str(exp_id)+'_'+str(time_range[0])+'_'+str(time_range[1])+'_nf_'+str(n_frame)+'.pdf')
        else:
            plt.savefig('NSTX_GPI_video_frames_'+str(exp_id)+'_'+str(start_time)+'_nf_'+str(n_frame)+'.pdf')
예제 #12
0
import numpy as np
import scipy

nstx_gpi_generate_synthetic_data(exp_id=1,
                                 time=0.0001,
                                 output_name='test',
                                 poloidal_velocity=10e3,
                                 radial_velocity=5e3,
                                 poloidal_size=0.02,
                                 radial_size=0.03,
                                 start_position=[1.5, 0.3],
                                 amplitude=1.,
                                 gaussian=True,
                                 add_background=False)

flap.slice_data('test', slicing={'Sample': 2}, output_name='test_0')
flap.slice_data('test', slicing={'Sample': 3}, output_name='test_1')
#flap.ccf('test_0', 'test_1',
#         coordinate=['Image x'],
#         options={'Resolution':1, 'Range':[-63,63], 'Trend removal':None, 'Normalize':True, 'Interval_n': 1},
#         output_name='test_01_correlation')

flap.ccf('test_0',
         'test_1',
         coordinate=['Image x', 'Image y'],
         options={
             'Resolution': 1,
             'Range': [[-63, 63], [-79, 79]],
             'Trend removal': None,
             'Normalize': True,
             'Interval_n': 1
예제 #13
0
correlation_evolution = np.zeros([n_frames + 1, n_lag + 1])
time_ranges = np.asarray([
    np.arange(0, n_lag + 1) / (n_lag) * (time_range[1] - time_range[0]) +
    time_range[0],
    np.arange(0, n_lag + 1) / (n_lag) * (time_range[1] - time_range[0]) +
    time_range[0] + time_window
]).T
flap.get_data('NSTX_GPI', exp_id=exp_id, name='', object_name='GPI')

for j in range(n_lag + 1):
    sample0 = flap.get_data_object_ref('GPI').slice_data(
        slicing={
            'Time': time_ranges[j, 0]
        }).coordinate('Sample')[0][0, 0]
    d = flap.slice_data(
        'GPI',
        slicing={'Sample': flap.Intervals(sample0, sample0 + n_frames)},
        output_name='GPI_SLICED')
    d.data = d.data / np.mean(d.data, axis=0)
    d = flap_nstx.analysis.detrend_multidim('GPI_SLICED',
                                            order=1,
                                            coordinates=['Image x', 'Image y'],
                                            output_name='GPI_SLICED_DETREND')

    time = flap.get_data_object_ref('GPI_SLICED_DETREND').coordinate(
        'Time')[0][:, 0, 0]
    time = time - time[0]

    frame1 = np.asarray(flap.slice_data('GPI_SLICED_DETREND',
                                        slicing={
                                            'Sample': sample0
                                        },
예제 #14
0
flap_mdsplus.register('NSTX_MDSPlus')

thisdir = os.path.dirname(os.path.realpath(__file__))
fn = os.path.join(thisdir, "flap_nstx.cfg")
flap.config.read(file_name=fn)

import matplotlib.pyplot as plt
from matplotlib import path as pltPath
import numpy as np
from scipy import interpolate
from scipy.signal import correlate
order = 0

flap.get_data('NSTX_GPI', exp_id=139901, name='', object_name='GPI_RAW')
d11 = flap.slice_data('GPI_RAW',
                      slicing={'Time': 0.324},
                      output_name='GPI_RAW_SLICED')
d12 = flap.slice_data('GPI_RAW',
                      slicing={'Time': 0.324 + 2.5e-6},
                      output_name='GPI_RAW_SLICED_2')
trend1 = flap_nstx.analysis.detrend_multidim(
    data_object='GPI_RAW_SLICED',
    coordinates=['Image x', 'Image y'],
    order=order,
    output_name='GPI_RAW_SLICED_DETREND',
    return_trend=True)
trend2 = flap_nstx.analysis.detrend_multidim(
    data_object='GPI_RAW_SLICED_2',
    coordinates=['Image x', 'Image y'],
    order=order,
    output_name='GPI_RAW_SLICED_2_DETREND',
예제 #15
0
def calculate_nstx_gpi_crosspower(exp_id=None,
                                  time_range=None,
                                  normalize_signal=False, #Normalize the amplitude for the average frame for the entire time range
                                  reference_pixel=None,
                                  reference_position=None,
                                  reference_flux=None,
                                  reference_area=None,      #In the unit of the reference, [psi,z] if reference_flux is not None
                                  fres=1.,                  #in KHz due to data being in ms
                                  flog=False,
                                  frange=None,
                                  interval_n=8.,
                                  filename=None,
                                  options=None,
                                  cache_data=False,
                                  normalize=False,           #Calculate coherency if True
                                  plot=False,
                                  plot_phase=False,
                                  axes=['Image x', 'Image y', 'Frequency'],
                                  hanning=True,
                                  colormap=None,
                                  video_saving_only=False,
                                  video_filename=None,
                                  save_video=False,
                                  comment=None,
                                  zlog=False,
                                  save_for_paraview=False
                                  ):
    
    #139901 [300,307]
    
    #This function returns the crosspower between a single signal and all the other signals in the GPI.
    #A separate function is dedicated for multi channel reference channel 
    #e.g 3x3 area and 64x80 resulting 3x3x64x80 cross power spectra
    
    #Read data from the cine file
    if time_range is None:
        print('The time range needs to set for the calculation.')
        print('There is no point of calculating the entire time range.')
        return
    else:    
        if (type(time_range) is not list and len(time_range) != 2):
            raise TypeError('time_range needs to be a list with two elements.')
    if exp_id is not None:
        print("\n------- Reading NSTX GPI data --------")
        if cache_data:
            try:
                d=flap.get_data_object_ref(exp_id=exp_id,object_name='GPI')
            except:
                print('Data is not cached, it needs to be read.')
                d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
        else:
            d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
    else:
        raise ValueError('The experiment ID needs to be set.')
    if reference_flux is not None:   
        d.add_coordinate(coordinates='Flux r',exp_id=exp_id)
    
    #Normalize the data for the maximum cloud distribution
    if normalize_signal:
        normalizer=flap_nstx.analysis.calculate_nstx_gpi_norm_coeff(exp_id=exp_id,             # Experiment ID
                                                                     f_high=1e2,            # Low pass filter frequency in Hz
                                                                     design='Chebyshev II',    # IIR filter design (from scipy)
                                                                     test=False,               # Testing input
                                                                     filter_data=True,         # IIR LPF the data
                                                                     time_range=None,          # Timer range for the averaging in ms [t1,t2]
                                                                     calc_around_max=False,    # Calculate the average around the maximum of the GPI signal
                                                                     time_window=50.,          # The time window for the calc_around_max calculation
                                                                     cache_data=True,          #
                                                                     verbose=False,
                                                                     )
        d.data = d.data/normalizer.data #This should be checked to some extent, it works with smaller matrices
    
    #Calculate the crosspower spectra for the timerange between the reference pixel and all the other pixels
    if reference_pixel is None and reference_position is None and reference_flux is None:
        calculate_apsd=True
        print('No reference is defined, returning autopower spectra.')
    else:
        calculate_apsd=False
        reference_signal=flap_nstx.analysis.calculate_nstx_gpi_reference('GPI', exp_id=exp_id,
                                                                         time_range=time_range,
                                                                         reference_pixel=reference_pixel,
                                                                         reference_area=reference_area,
                                                                         reference_position=reference_position,
                                                                         reference_flux=reference_flux,
                                                                         output_name='GPI_REF')
    
    flap.slice_data('GPI',exp_id=exp_id,
                    slicing={'Time':flap.Intervals(time_range[0],time_range[1])},
                    output_name='GPI_SLICED')
    if calculate_apsd:
        object_name='GPI_APSD'
        d=flap.apsd('GPI_SLICED',exp_id=exp_id,
                  coordinate='Time',
                  options={'Resolution':fres,
                           'Range':frange,
                           'Logarithmic':flog,
                           'Interval_n':interval_n,
                           'Hanning':hanning,
                           'Trend removal':None,
                           },
                   output_name=object_name)
    else:
        object_name='GPI_CPSD'
        flap.cpsd('GPI_SLICED',exp_id=exp_id,
                  ref=reference_signal,
                  coordinate='Time',
                  options={'Resolution':fres,
                           'Range':frange,
                           'Logarithmic':flog,
                           'Interval_n':interval_n,
                           'Hanning':hanning,
                           'Normalize':normalize,
                           'Trend removal':None,
                           },
                   output_name=object_name)
        flap.abs_value(object_name,exp_id=exp_id,
                       output_name='GPI_CPSD_ABS')
        flap.phase(object_name,exp_id=exp_id,
                   output_name='GPI_CPSD_PHASE')    
    if not save_video:
        if plot:
            if calculate_apsd:
                object_name='GPI_APSD'
            else:
                if plot_phase:
                    object_name='GPI_CPSD_PHASE'
                else:
                    object_name='GPI_CPSD_ABS'
            flap.plot(object_name, exp_id=exp_id,
                      plot_type='animation', 
                      axes=axes, 
                      options={'Force axes':True,
                               'Colormap':colormap,
                               'Plot units':{'Device R':'mm',
                                             'Device z':'mm',
                                             'Frequency':'kHz'},
                               'Log z':zlog})
    else:
        if video_filename is None:
            if time_range is not None:
                video_filename='NSTX_GPI_'+str(exp_id)
                if calculate_apsd:
                    video_filename+='_APSD'
                else:
                    video_filename+='_CPSD'
                    if plot_phase:
                        video_filename+='_PHASE'
                    else:
                        video_filename+='_ABS'
                video_filename+='_'+str(time_range[0])+'_'+str(time_range[1])
                if reference_pixel is not None:
                    video_filename+='_PIX_'+str(reference_pixel[0])+'_'+str(reference_pixel[1])
                if reference_position is not None:
                    video_filename+='_POS_'+str(reference_position[0])+'_'+str(reference_position[1])
                if reference_flux is not None:
                    video_filename+='_FLX_'+str(reference_flux[0])+'_'+str(reference_flux[1])
                video_filename+='_FRES_'+str(fres)
                if comment is not None:
                    video_filename+=comment
                video_filename+='.mp4'            
            else:
                video_filename='NSTX_GPI_CPSD_'+str(exp_id)+'_FULL.mp4'      
        if video_saving_only:
            import matplotlib
            current_backend=matplotlib.get_backend()
            matplotlib.use('agg')
            waittime=0.
        else:
            waittime=1.
            
        if calculate_apsd:
            object_name='GPI_APSD'
        else:
            if plot_phase:
                object_name='GPI_CPSD_PHASE'
            else:
                object_name='GPI_CPSD_ABS'
                
        flap.plot(object_name, exp_id=exp_id,
                  plot_type='anim-contour', 
                  axes=axes, 
                  options={'Force axes':True,
                           'Colormap':colormap,
                           'Plot units':{'Device R':'mm',
                                         'Device z':'mm',
                                         },
                           'Waittime':waittime,
                           'Video file':video_filename,
                           'Video format':'mp4',
                           'Log z':zlog})
                           
            
        if video_saving_only:
            import matplotlib
            matplotlib.use(current_backend)
예제 #16
0
def test_ccf():
    plt.close('all')
    print()
    print(
        '>>>>>>>>>>>>>>>>>>> Test ccf (Cross Correlation Function) <<<<<<<<<<<<<<<<<<<<<<<<'
    )
    flap.delete_data_object('*')
    print(
        "**** Generating 10x15 random test signals, 5000 points each, 1 MHz sampling."
    )
    flap.get_data('TESTDATA',
                  name='TEST-*-*',
                  options={
                      'Length': 0.005,
                      'Signal': 'Random'
                  },
                  object_name='TESTDATA')
    print("**** Filtering with 10 microsec integrating filter.")
    flap.filter_data('TESTDATA',
                     coordinate='Time',
                     options={
                         'Type': 'Int',
                         'Tau': 1e-5
                     },
                     output_name='TESTDATA_filt')
    flap.list_data_objects()
    plt.figure()
    print("**** Plotting an original and a filtered signal.")
    flap.plot('TESTDATA', slicing={'Row': 1, 'Column': 1}, axes='Time')
    flap.plot('TESTDATA_filt', slicing={'Row': 1, 'Column': 1})
    print('**** Calculating the 10x15x10x15 CCFs, each 5000 samples.')
    print('**** CCF START')
    start = time.time()
    flap.ccf('TESTDATA_filt',
             coordinate='Time',
             options={
                 'Trend': 'Mean',
                 'Range': [-1e-4, 1e-4],
                 'Res': 1e-5,
                 'Norm': True
             },
             output_name='CCF')
    stop = time.time()
    print('**** CCF STOP')
    print("**** Calculation time: {:6.3f} ms/signal".format(
        1000 * (stop - start) / (10 * 15 * 10 * 15)))
    flap.list_data_objects()
    print(
        "**** Plotting spatiotemporal correlation function at ref row, column 3,3, column 3"
    )
    plt.figure()
    flap.plot('CCF',
              slicing={
                  'Row (Ref)': 3,
                  'Column (Ref)': 3,
                  'Column': 3
              },
              axes=['Time lag'],
              plot_type='multi xy')

    print("**** Slicing TESTDATA_filt for row: 1-3, column:1-4")
    flap.slice_data('TESTDATA_filt',
                    slicing={
                        'Row': [1, 2, 3],
                        'Column': [1, 2, 3, 4]
                    },
                    output_name='TESTDATA_filt_3x4')
    print('**** Calculating CCFs, between original and sliced TESTDATAfilt')
    print('**** CCF START')
    flap.ccf('TESTDATA_filt',
             ref='TESTDATA_filt_3x4',
             coordinate='Time',
             options={
                 'Trend': 'Mean',
                 'Range': [-1e-4, 1e-4],
                 'Res': 1e-5,
                 'Norm': True
             },
             output_name='CCF_ref')
    print('**** CCF STOP')
    flap.list_data_objects()
    print(
        "**** Plotting spatiotemporal correlation function at ref row, column 3,3, column 3"
    )
    plt.figure()
    flap.plot('CCF_ref',
              slicing={
                  'Row (Ref)': 3,
                  'Column (Ref)': 3,
                  'Column': 3
              },
              axes=['Time lag'],
              plot_type='multi xy')
예제 #17
0
def plot_results_for_paper():
    pearson=False
    wd=flap.config.get_all_section('Module NSTX_GPI')['Working directory']
    #Figure 1
    '''NO CODE IS NEEDED'''
    #Figure 2
    '''NO CODE IS NEEDED'''
    
    #Figure 3
    from flap_nstx.analysis import show_nstx_gpi_video_frames
    #fig, ax = plt.subplots(figsize=(6.5,5))
    if plot[3]:
        gs=GridSpec(5,2)
        ax,fig=plt.subplots(figsize=(8.5/2.54,6))
        pdf=PdfPages(wd+'/plots/figure_3_139901_basic_plots.pdf')
        
        plt.subplot(gs[0,0])
        flap.get_data('NSTX_MDSPlus',
                      name='\WF::\DALPHA',
                      exp_id=139901,
                      object_name='DALPHA').plot(options={'Axes visibility':[False,True]})
        plt.xlim([0,1.2])
        plt.subplot(gs[1,0])
        flap.get_data('NSTX_GPI',
                      name='',
                      exp_id=139901,
                      object_name='GPI').slice_data(summing={'Image x':'Mean', 'Image y':'Mean'}).plot(options={'Axes visibility':[False,True]})
        plt.xlim([0,1.2])
        
        plt.xlim([0,1.2])
        plt.subplot(gs[2,0])
        flap.get_data('NSTX_MDSPlus',
                      name='IP',
                      exp_id=139901,
                      object_name='IP').plot(options={'Axes visibility':[False,True]})
        plt.xlim([0,1.2])
        plt.subplot(gs[3,0])
        d=flap_nstx_thomson_data(exp_id=139901, density=True, output_name='DENSITY')
        dR = d.coordinate('Device R')[0][:,:]-np.insert(d.coordinate('Device R')[0][0:-1,:],0,0,axis=0)
        LID=np.sum(d.data*dR,axis=0)
        plt.plot(d.coordinate('Time')[0][0,:],LID)
        plt.title('Line integrated density')
        plt.xlabel('Time [s]')
        plt.ylabel('n_e [m^-2]')
        plt.xlim([0,1.2])
        ax=plt.gca()
        ax.get_xaxis().set_visible(False)
        
        plt.subplot(gs[4,0])
        magnetics=flap.get_data('NSTX_MDSPlus',
                                name='\OPS_PC::\\BDOT_L1DMIVVHF5_RAW',
                                exp_id=139901,
                                object_name='MIRNOV')
        
        magnetics.coordinates.append(copy.deepcopy(flap.Coordinate(name='Time equi',
                                           unit='s',
                                           mode=flap.CoordinateMode(equidistant=True),
                                           shape = [],
                                           start=magnetics.coordinate('Time')[0][0],
                                           step=magnetics.coordinate('Time')[0][1]-magnetics.coordinate('Time')[0][0],
                                           dimension_list=[0])))
        
        magnetics.filter_data(coordinate='Time equi',
                              options={'Type':'Bandpass',
                                       'f_low':100e3,
                                       'f_high':500e3,
                                       'Design':'Elliptic'}).plot()
        plt.xlim([0,1.2])
        
        plt.subplot(gs[0,1])
        flap.get_data('NSTX_MDSPlus',
                      name='\WF::\DALPHA',
                      exp_id=139901,
                      object_name='DALPHA').plot(options={'Axes visibility':[False,False]})
        plt.xlim([0.25,0.4])
        plt.subplot(gs[1,1])
        flap.get_data('NSTX_GPI',
                      name='',
                      exp_id=139901,
                      object_name='GPI').slice_data(summing={'Image x':'Mean', 'Image y':'Mean'}).plot(options={'Axes visibility':[False,False]})
        plt.xlim([0.25,0.4])
        
        plt.subplot(gs[2,1])
        flap.get_data('NSTX_MDSPlus',
                      name='IP',
                      exp_id=139901,
                      object_name='IP').plot(options={'Axes visibility':[False,False]})
        plt.xlim([0.25,0.4])
        
        plt.subplot(gs[3,1])
        d=flap_nstx_thomson_data(exp_id=139901, density=True, output_name='DENSITY')
        dR = d.coordinate('Device R')[0][:,:]-np.insert(d.coordinate('Device R')[0][0:-1,:],0,0,axis=0)
        LID=np.sum(d.data*dR,axis=0)
        plt.plot(d.coordinate('Time')[0][0,:],LID)
        plt.title('Line integrated density')
        plt.xlabel('Time [s]')
        plt.ylabel('n_e [m^-2]')
        plt.xlim([0.25,0.4])
        ax=plt.gca()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
        
        plt.subplot(gs[4,1])
        magnetics=flap.get_data('NSTX_MDSPlus',
                                name='\OPS_PC::\\BDOT_L1DMIVVHF5_RAW',
                                exp_id=139901,
                                object_name='MIRNOV')
        
        magnetics.coordinates.append(copy.deepcopy(flap.Coordinate(name='Time equi',
                                           unit='s',
                                           mode=flap.CoordinateMode(equidistant=True),
                                           shape = [],
                                           start=magnetics.coordinate('Time')[0][0],
                                           step=magnetics.coordinate('Time')[0][1]-magnetics.coordinate('Time')[0][0],
                                           dimension_list=[0])))
        
        magnetics.filter_data(coordinate='Time equi',
                              options={'Type':'Bandpass',
                                       'f_low':100e3,
                                       'f_high':500e3,
                                       'Design':'Elliptic'}).plot(slicing={'Time':flap.Intervals(0.25,0.4)})
    
        plt.xlim([0.25,0.4])
        ax=plt.gca()
        ax.get_yaxis().set_visible(False)
        pdf.savefig()
        pdf.close()
        
    if plot[4]:
        plt.figure()
        ax,fig=plt.subplots(figsize=(3.35*2,5.5))
        pdf=PdfPages(wd+'/plots/figure_5_139901_0.3249158_30_frame.pdf')
        show_nstx_gpi_video_frames(exp_id=139901, 
                                   start_time=0.3249158,
                                   n_frame=30,
                                   logz=False,
                                   z_range=[0,3900],
                                   plot_filtered=False, 
                                   normalize=False,
                                   cache_data=False, 
                                   plot_flux=False, 
                                   plot_separatrix=True, 
                                   flux_coordinates=False,
                                   device_coordinates=True,
                                   new_plot=False,
                                   save_pdf=True,
                                   colormap='gist_ncar',
                                   save_for_paraview=False,
                                   colorbar_visibility=True
                                   )
        pdf.savefig()
        pdf.close()
    #Figure 5
    if plot[5] or plot[6] or plot[7]:
        try:
            d1,d2,d3,d4=pickle.load(open(wd+'/processed_data/fig_6_8_flap_object.pickle','rb'))
            flap.add_data_object(d1, 'GPI_SLICED_FULL')
            flap.add_data_object(d2, 'GPI_GAS_CLOUD')
            flap.add_data_object(d3, 'GPI_SLICED_DENORM_CCF_VEL')
            flap.add_data_object(d4, 'GPI_CCF_F_BY_F')
        except:
            calculate_nstx_gpi_avg_frame_velocity(exp_id=139901, 
                                                  time_range=[0.325-1e-3,0.325+1e-3], 
                                                  plot=False,
                                                  subtraction_order_for_velocity=1,
                                                  skip_structure_calculation=False,
                                                  correlation_threshold=0.,
                                                  pdf=False, 
                                                  nlevel=51, 
                                                  nocalc=False, 
                                                  filter_level=3, 
                                                  normalize_for_size=True,
                                                  normalize_for_velocity=True,
                                                  threshold_coeff=1.,
                                                  normalize_f_high=1e3, 
                                                  
                                                  normalize='roundtrip', 
                                                  velocity_base='cog', 
                                                  return_results=False, 
                                                  plot_gas=True)
            pickle.dump((flap.get_data_object('GPI_SLICED_FULL'),
                         flap.get_data_object('GPI_GAS_CLOUD'),
                         flap.get_data_object('GPI_SLICED_DENORM_CCF_VEL'),
                         flap.get_data_object('GPI_CCF_F_BY_F')), open(wd+'/processed_data/fig_6_8_flap_object.pickle','wb'))
    if plot[5]:
        pdf=PdfPages(wd+'/plots/figure_6_normalization.pdf')
        times=[0.3245,0.3249560,0.3255]
        signals=['GPI_SLICED_FULL',
                 'GPI_GAS_CLOUD',
                 'GPI_SLICED_DENORM_CCF_VEL']
        gs=GridSpec(3,3)
        plt.figure()                
        ax,fig=plt.subplots(figsize=(3.35,4))
        titles=['Raw frame', 'Gas cloud', 'Normalized']
        for index_grid_x in range(3):
            for index_grid_y in range(3):
                plt.subplot(gs[index_grid_x,index_grid_y])
                visibility=[True,True]
                if index_grid_x != 3-1:
                    visibility[0]=False
                if index_grid_y != 0:
                    visibility[1]=False
#                if index_grid_x == 0:
#                    z_range=[0,4096]
#                elif index_grid_x == 1:
#                    z_range=[0,400]
#                elif index_grid_x == 2:
#                    z_range=[0,40]
                z_range=None
                flap.plot(signals[index_grid_x], 
                          plot_type='contour', 
                          slicing={'Time':times[index_grid_y]}, 
                          axes=['Image x', 'Image y'],
                          options={'Z range':z_range,
                                   'Interpolation': 'Closest value',
                                   'Clear':False,
                                   'Equal axes':True,
                                   'Axes visibility':visibility,
                                   #'Colormap':'gist_ncar',
                                   'Colorbar':True,
                                   #'Overplot options':oplot_options,
                                   },
                           plot_options={'levels':51},
                           )
                if index_grid_x == 0:
                    #ax=plt.gca()
                    plt.title(f"{times[index_grid_y]*1e3:.3f}"+' '+titles[index_grid_x])
                else:
                    plt.title(titles[index_grid_x])
    
        pdf.savefig()
        pdf.close()
    
    #Figure 6
    if plot[6]:
        flap.get_data('NSTX_GPI',exp_id=139901,
                      name='',
                      object_name='GPI')
        flap.slice_data('GPI', slicing={'Time':flap.Intervals(0.3245,0.3255)}, output_name='GPI_SLICED_FULL')
        data_object_name='GPI_SLICED_DENORM_CCF_VEL'
        detrended=flap_nstx.analysis.detrend_multidim(data_object_name,
                                                      exp_id=139901,
                                                      order=4, 
                                                      coordinates=['Image x', 'Image y'], 
                                                      output_name='GPI_DETREND_VEL')
        
        d=copy.deepcopy(flap.get_data_object(data_object_name))
        
        d.data=d.data-detrended.data
        flap.add_data_object(d,'GPI_TREND')
        
        signals=[data_object_name,
                 'GPI_TREND',
                 'GPI_DETREND_VEL']
        
        pdf=PdfPages(wd+'/plots/figure_7_trend_subtraction.pdf')

        gs=GridSpec(1,3)
        plt.figure()                
        ax,fig=plt.subplots(figsize=(8.5/2.54,2))
        for index_grid_x in range(3):
            plt.subplot(gs[index_grid_x])
            visibility=[True,True]
            if index_grid_x != 0:
                visibility[1]=False
            z_range=[0,10]
            colorbar=False
            flap.plot(signals[index_grid_x], 
                      plot_type='contour', 
                      slicing={'Time':0.3249560},
                      #slicing={'Sample':29808},
                      axes=['Image x', 'Image y'],
                      options={'Interpolation': 'Closest value',
                               'Clear':False,
                               'Equal axes':True,
                               'Axes visibility':visibility,
                               #'Colormap':colormap,
                               'Colorbar':True,
                               #'Overplot options':oplot_options,
                               },
                       plot_options={'levels':51},
                           )
        #fig.tight_layout()
        pdf.savefig()
        pdf.close()
        
    #Figure 7
    if plot[7]:
        pdf=PdfPages(wd+'/plots/figure_8_CCF_frame_by_frame.pdf')
        gs=GridSpec(1,3)
        plt.figure()                
        ax,fig=plt.subplots(figsize=(8.5/2.54,2))
        plt.subplot(gs[0])
        flap.plot('GPI_SLICED_FULL', 
                  plot_type='contour', 
                  slicing={'Sample':29806}, 
                  axes=['Image x', 'Image y'],
                  options={
                          'Z range':[0,4096],
                           'Interpolation': 'Closest value',
                           'Clear':False,
                           'Equal axes':True,
                           'Axes visibility':[True,True],
                           'Colormap':'gist_ncar',
                           'Colorbar':False,
                           #'Overplot options':oplot_options,
                           },
                   plot_options={'levels':51},
                       )
        plt.title("324.959ms")
        plt.subplot(gs[1])
        flap.plot('GPI_SLICED_FULL', 
                   plot_type='contour', 
                   slicing={'Sample':29807}, 
                   axes=['Image x', 'Image y'],
                   options={'Z range':[0,4096],
                            'Interpolation': 'Closest value',
                            'Clear':False,
                            'Equal axes':True,
                            'Axes visibility':[True,False],
                            'Colorbar':False,
                            'Colormap':'gist_ncar',
                            },
                    plot_options={'levels':51},
                    )
        plt.title("324.961ms")
        plt.subplot(gs[2])
        flap.plot('GPI_CCF_F_BY_F', 
                  plot_type='contour', 
                  slicing={'Sample':29807, 'Image x':flap.Intervals(-10,10),'Image y':flap.Intervals(-10,10)}, 
                  
                  axes=['Image x', 'Image y'],
                  options={
                          #'Z range':[0,2048],
                           'Interpolation': 'Closest value',
                           'Clear':False,
                           'Equal axes':True,
                           'Axes visibility':[True,True],
                           #'Colormap':colormap,
                           'Colorbar':True,
                           #'Overplot options':oplot_options,
                           },
                   plot_options={'levels':51},
                       )
        plt.title("CCF")
        pdf.savefig()
        pdf.close()
        
    #Figure 8
    if plot[8]:
    #2x2 frames with the found structures during an ELM burst
        calculate_nstx_gpi_avg_frame_velocity(exp_id=139901, 
                                              time_range=[0.32495,0.325], 
                                              plot=False,
                                              subtraction_order_for_velocity=4,
                                              skip_structure_calculation=False,
                                              correlation_threshold=0.5,
                                              pdf=True, 
                                              nlevel=51, 
                                              nocalc=False, 
                                              filter_level=5, 
                                              normalize_for_size=True,
                                              normalize_for_velocity=True,
                                              threshold_coeff=1.,
                                              normalize_f_high=1e3, 
                                              normalize='roundtrip', 
                                              velocity_base='cog', 
                                              return_results=False, 
                                              plot_gas=True,
                                              structure_pixel_calc=True,
                                              structure_pdf_save=True,
                                              test_structures=True
                                              )
        #Post processing done with illustrator
        
    #Figure 9
    if plot[9]:
    #2x3
    #Synthetic GPI signal
    #Postprocessing done with illustrator
        nstx_gpi_generate_synthetic_data(exp_id=1, 
                                         time=0.0001, 
                                         amplitude=1.0, 
                                         output_name='test', 
                                         poloidal_velocity=3e3, 
                                         radial_velocity=0., 
                                         poloidal_size=0.10,
                                         radial_size=0.05, 
                                         waveform_divider=1, 
                                         sinusoidal=True)
        d=flap.get_data_object('test', exp_id=1)
        d.data=d.data-np.mean(d.data,axis=0)
        calculate_nstx_gpi_avg_frame_velocity(data_object='test',
                                              exp_id=1,
                                              time_range=[0.000000,0.00005],
                                              plot=False,
                                              subtraction_order_for_velocity=1,
                                              skip_structure_calculation=False,
                                              correlation_threshold=0.5,
                                              pdf=True, 
                                              nlevel=51, 
                                              nocalc=False, 
                                              filter_level=5, 
                                              normalize_for_size=False,
                                              normalize_for_velocity=False,
                                              threshold_coeff=1.,
                                              normalize_f_high=1e3, 
                                              normalize=None, 
                                              velocity_base='cog', 
                                              return_results=False, 
                                              plot_gas=False,
                                              structure_pixel_calc=True,
                                              structure_pdf_save=True,
                                              test_structures=True
                                              )
    #Figure 10
    if plot[10]:
    #Single shot results
        calculate_nstx_gpi_avg_frame_velocity(exp_id=139901, 
                                              time_range=[0.325-2e-3,0.325+2e-3], 
                                              plot_time_range=[0.325-0.5e-3,0.325+0.5e-3],
                                              plot=True,
                                              subtraction_order_for_velocity=4,
                                              skip_structure_calculation=False,
                                              correlation_threshold=0.6,
                                              pdf=True, 
                                              nlevel=51, 
                                              nocalc=True, 
                                              gpi_plane_calculation=True,
                                              filter_level=5, 
                                              normalize_for_size=True,
                                              normalize_for_velocity=True,
                                              threshold_coeff=1.,
                                              normalize_f_high=1e3, 
                                              normalize='roundtrip', 
                                              velocity_base='cog', 
                                              return_results=False, 
                                              plot_gas=True,
                                              plot_for_publication=True,
                                              plot_scatter=False,
                                              overplot_average=False,
                                              overplot_str_vel=False)
    #2x3
    #Done with Illustrator
    #Figure 12
    if plot[11]:
    #Conditional averaged results
        calculate_avg_velocity_results(pdf=True, 
                                       plot=True, 
                                       plot_max_only=True,
                                       plot_for_publication=True,
                                       normalized_velocity=True, 
                                       subtraction_order=4, 
                                       normalized_structure=True, 
                                       opacity=0.5, 
                                       correlation_threshold=0.6,
                                       gpi_plane_calculation=True,
                                       plot_scatter=False)
    #Post processing done with Illustrator
    
    #Figure 11
    if plot[12]:
        if pearson:
            pdf=PdfPages(wd+'/plots/figure_13_pearson_matrix.pdf')
            pearson=calculate_nstx_gpi_correlation_matrix(calculate_average=False,
                                                          gpi_plane_calculation=True,
                                                          window_average=0.050e-3,
                                                          elm_burst_window=True)
            data=pearson[:,:,0]
            variance=pearson[:,:,1]
            data[10,10]=-1
            plt.figure()
            plt.subplots(figsize=(8.5/2.54,8.5/2.54/1.618))
            plt.matshow(data, cmap='seismic')
            plt.xticks(ticks=np.arange(11), labels=['Velocity ccf R',       #0,1
                                                    'Velocity ccf z',       #0,1
                                                    'Velocity str max R',   #2,3
                                                    'Velocity str max z',   #2,3
                                                    'Size max R',           #4,5
                                                    'Size max z',           #4,5
                                                    'Position max R',       #6,7
                                                    'Position max z',       #6,7
                                                    'Area max',           #8
                                                    'Elongation max',     #9
                                                    'Angle max'], rotation='vertical')
            plt.yticks(ticks=np.arange(11), labels=['Velocity ccf R',       #0,1
                                                    'Velocity ccf z',       #0,1
                                                    'Velocity str max R',   #2,3
                                                    'Velocity str max z',   #2,3
                                                    'Size max R',           #4,5
                                                    'Size max z',           #4,5
                                                    'Position max R',       #6,7
                                                    'Position max z',       #6,7
                                                    'Area max',           #8
                                                    'Elongation max',     #9
                                                    'Angle max'])
            plt.colorbar()
            plt.show()
            pdf.savefig()
            plt.figure()
            plt.subplots(figsize=(8.5/2.54,8.5/2.54/1.618))
            variance[10,10]=-1
            variance[9,9]=1
            plt.matshow(variance, cmap='seismic')
            #plt.matshow(data, cmap='gist_ncar')
            plt.xticks(ticks=np.arange(11), labels=['Velocity ccf R',       #0,1
                                                    'Velocity ccf z',       #0,1
                                                    'Velocity str max R',   #2,3
                                                    'Velocity str max z',   #2,3
                                                    'Size max R',           #4,5
                                                    'Size max z',           #4,5
                                                    'Position max R',       #6,7
                                                    'Position max z',       #6,7
                                                    'Area max',           #8
                                                    'Elongation max',     #9
                                                    'Angle max'], rotation='vertical')
            plt.yticks(ticks=np.arange(11), labels=['Velocity ccf R',       #0,1
                                                    'Velocity ccf z',       #0,1
                                                    'Velocity str max R',   #2,3
                                                    'Velocity str max z',   #2,3
                                                    'Size max R',           #4,5
                                                    'Size max z',           #4,5
                                                    'Position max R',       #6,7
                                                    'Position max z',       #6,7
                                                    'Area max',           #8
                                                    'Elongation max',     #9
                                                    'Angle max'])
            plt.colorbar()
            plt.show()
            pdf.savefig()
            pdf.close()
            
        else:
            pdf=PdfPages(wd+'/plots/figure_13_dependence.pdf')
            plt.figure()
            plt.subplots(figsize=(17/2.54,17/2.54/1.618))
            plot_all_parameters_vs_all_other_average(window_average=0.2e-3, symbol_size=0.3, plot_error=True)
            pdf.savefig()
            pdf.close()
예제 #18
0
def show_nstx_gpi_timetrace(exp_id=None,
                            plot_filtered=False,
                            time_range=None,
                            new_plot=False,
                            overplot=False,
                            scale=1.0,
                            save_pdf=False,
                            cache_data=True,
                            ):
    plot_options={}
    if time_range is None:
        print('time_range is None, the entire shot is plot.')
        slicing_range=None
    else:    
        if (type(time_range) is not list and len(time_range) != 2):
            raise TypeError('time_range needs to be a list with two elements.')
        plot_options['X range']=time_range
        slicing_range={'Time':flap.Intervals(time_range[0],time_range[1])}
    if exp_id is not None:
        print("\n------- Reading NSTX GPI data --------")
        if cache_data:
            try:
                d=flap.get_data_object_ref(exp_id=exp_id,object_name='GPI')
            except:
                print('Data is not cached, it needs to be read.')
                d=flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
        else:
            flap.get_data('NSTX_GPI',exp_id=exp_id,name='',object_name='GPI')
    else:
        raise ValueError('The experiment ID needs to be set.')
    flap.slice_data('GPI',
                    #slicing=slicing_range,
                    slicing=slicing_range,
                    summing={'Image x':'Mean','Image y':'Mean'},
                    output_name='GPI_MEAN')
    object_name='GPI_MEAN'
    
    if plot_filtered:
        print("**** Filtering GPI")
        object_name='GPI_MEAN_FILTERED'
        flap.filter_data('GPI_MEAN',output_name='GPI_MEAN_FILTERED',coordinate='Time',
                         options={'Type':'Highpass',
                                  'f_low':1e2,
                                  'Design':'Chebyshev II'}) #Data is in milliseconds
    if scale != 1.0:
        d=flap.get_data_object_ref(object_name, exp_id)
        d.data=d.data*scale
    if new_plot and not overplot:
        plt.figure()
    elif overplot:
        plot_options['Force axes']=True
    else:
        plt.cla()
    plot_options['All points']=True
    
    flap.plot(object_name,
              axes=['Time', '__Data__'],
              exp_id=exp_id,
              options=plot_options)
    if save_pdf:
        if time_range is not None:
            filename='NSTX_'+str(exp_id)+'_GPI_'+str(time_range[0])+'_'+str(time_range[1])+'_mean.pdf'
        else:
            filename='NSTX_'+str(exp_id)+'_GPI_mean.pdf'
        plt.savefig(filename)
예제 #19
0
def export_gpi_data_to_paraview(exp_id=None,
                                time_range=None,
                                filename=None,
                                filter_data=True,
                                flux_coordinates=False):

    if filename is None:
        filename = 'GPI_FOR_PARAVIEW_' + str(exp_id) + '_' + str(
            time_range[0]) + '_' + str(time_range[1])
#    d=flap.get_data('NSTX_GPI', exp_id=exp_id, name='', object_name='GPI')
#    d=flap.slice_data('GPI', slicing={'Time':flap.Intervals(time_range[0],time_range[1])})
#    if filter_data:
#        d=flap.filter_data('GPI',exp_id=exp_id,
#                           coordinate='Time',
#                           options={'Type':'Highpass',
#                                    'f_low':1e2,
#                                    'Design':'Chebyshev II'})
#        filename=filename+'_FILTERED'
#    time=d.coordinate('Time')[0]
#    x=d.coordinate('Device R')[0].flatten()
#    y=d.coordinate('Device z')[0].flatten()
#    t=time.flatten()
#    data=d.data.flatten()
#    np.savetxt(filename, np.asarray([[x],[y],[1000*t],[data]])[:,0,:].T, delimiter=",", header='x [m], y [m], t [ms], data [a.u.]')

    d = flap.get_data('NSTX_GPI', exp_id=exp_id, name='', object_name='GPI')
    if filter_data:
        d = flap.filter_data('GPI',
                             exp_id=exp_id,
                             coordinate='Time',
                             options={
                                 'Type': 'Highpass',
                                 'f_low': 1e2,
                                 'Design': 'Chebyshev II'
                             })
        filename += '_FILTERED'
    if flux_coordinates:
        flap.add_coordinate('GPI', 'Flux r')
        filename += '_FLUX'
    d = flap.slice_data(
        'GPI', slicing={'Time': flap.Intervals(time_range[0], time_range[1])})
    #    time=d.coordinate('Time')[0]
    #    ind=np.where(np.logical_and(time[:,0,0]>=time_range[0], time[:,0,0]<=time_range[1]))
    #    x1=d.coordinate('Device R')[0][ind,:,:].flatten()
    #    y=d.coordinate('Device z')[0][ind,:,:].flatten()
    #    t=time[ind,:,:].flatten()
    #    data=d.data[ind,:,:].flatten()

    t = d.coordinate('Time')[0].flatten()
    x1 = d.coordinate('Device R')[0].flatten()
    y = d.coordinate('Device z')[0].flatten()
    data = d.data.flatten()
    filename = filename + '.csv'
    if flux_coordinates:
        #x2=d.coordinate('Flux r')[0][ind,:,:].flatten()
        x2 = d.coordinate('Flux r')[0].flatten()
        x2 = (x2 - np.min(x2)) / (np.max(x2) - np.min(x2)) * (
            np.max(x1) - np.min(x1)) + np.min(x1)
        np.savetxt(
            filename,
            np.asarray([[x1], [x2], [y], [10000 * t], [data]])[:, 0, :].T,
            delimiter=",",
            header='R [m], PSI_rescaled [m], z [m], t [0.1ms], data [a.u.]')
    else:
        np.savetxt(filename,
                   np.asarray([[x1], [y], [10000 * t], [data]])[:, 0, :].T,
                   delimiter=",",
                   header='R [m], z [m], t [0.1ms], data [a.u.]')
예제 #20
0
def nstx_gpi_velocity_analysis_spatio_temporal_displacement(exp_id=None,                          #Shot number
                                                            time_range=None,                      #The time range for the calculation
                                                            data_object=None,                     #Input data object if available from outside (e.g. generated sythetic signal)
                                                            x_range=[0,63],                       #X range for the calculation
                                                            y_range=[0,79],                       #Y range for the calculation
                                                            x_search=10,
                                                            y_search=10,
                                                            
                                                            fbin=10,
                                                            plot=True,                            #Plot the results
                                                            pdf=False,                            #Print the results into a PDF
                                                            plot_error=False,                     #Plot the errorbars of the velocity calculation based on the line fitting and its RMS error
                                                          
                                                            #File input/output options
                                                            filename=None,                        #Filename for restoring data
                                                            nocalc=True,                          #Restore the results from the .pickle file from filename+.pickle
                                                            return_results=False,
                                                            ):
        
    #Constants for the calculation
    #Using the spatial calibration to find the actual velocities.
    coeff_r=np.asarray([3.7183594,-0.77821046,1402.8097])/1000. #The coordinates are in meters, the coefficients are in mm
    coeff_z=np.asarray([0.18090118,3.0657776,70.544312])/1000.  #The coordinates are in meters, the coefficients are in mm
    
    #Input error handling
    if exp_id is None and data_object is None:
        raise ValueError('Either exp_id or data_object needs to be set for the calculation.')
        
    if data_object is None:
        if time_range is None and filename is None:
            raise ValueError('It takes too much time to calculate the entire shot, please set a time_range.')
        else:    
            if type(time_range) is not list and filename is None:
                raise TypeError('time_range is not a list.')
            if filename is None and len(time_range) != 2:
                raise ValueError('time_range should be a list of two elements.')
    
    if data_object is not None and type(data_object) == str:
        if exp_id is None:
            exp_id='*'
        d=flap.get_data_object(data_object,exp_id=exp_id)
        time_range=[d.coordinate('Time')[0][0,0,0],
                    d.coordinate('Time')[0][-1,0,0]]
        exp_id=d.exp_id
        flap.add_data_object(d, 'GPI_SLICED_FULL')
               
    if filename is None:
        wd=flap.config.get_all_section('Module NSTX_GPI')['Working directory']
        comment=''
        filename=flap_nstx.analysis.filename(exp_id=exp_id,
                                             working_directory=wd+'/processed_data',
                                             time_range=time_range,
                                             purpose='sz velocity',
                                             comment=comment)
        
    pickle_filename=filename+'.pickle'
    if not os.path.exists(pickle_filename) and nocalc:
        print('The pickle file cannot be loaded. Recalculating the results.')
        nocalc=False

    if nocalc is False:
        slicing={'Time':flap.Intervals(time_range[0],time_range[1])}
        #Read data
        if data_object is None:
            print("\n------- Reading NSTX GPI data --------")
            d=flap.get_data('NSTX_GPI',exp_id=exp_id,
                            name='',
                            object_name='GPI')
          
            d=flap.slice_data('GPI',exp_id=exp_id, 
                              slicing=slicing,
                              output_name='GPI_SLICED_FULL')
            d.data=np.asarray(d.data, dtype='float32')
            
        count=d.data.shape[0]
        vpol_p     = np.zeros([x_range[1]-x_range[0]+1,y_range[1]-y_range[0]+1,count])    #  poloidal velocity in km/sec vs. pixel
        vrad_p     = np.zeros([x_range[1]-x_range[0]+1,y_range[1]-y_range[0]+1,count])    #  radial velocity vs. pixel
        vpol_n     = np.zeros([x_range[1]-x_range[0]+1,y_range[1]-y_range[0]+1,count])    #  poloidal velocity in km/sec vs. pixel
        vrad_n     = np.zeros([x_range[1]-x_range[0]+1,y_range[1]-y_range[0]+1,count])    #  radial velocity vs. pixel  
        
        vpol = np.zeros([x_range[1]-x_range[0]+1,y_range[1]-y_range[0]+1,count])
        vrad = np.zeros([x_range[1]-x_range[0]+1,y_range[1]-y_range[0]+1,count])
        cmax_n = np.zeros([x_range[1]-x_range[0]+1,y_range[1]-y_range[0]+1,count])
        cmax_p = np.zeros([x_range[1]-x_range[0]+1,y_range[1]-y_range[0]+1,count])
        
        sample_time=d.coordinate('Time')[0][1,0,0]-d.coordinate('Time')[0][0,0,0]
        ccorr_n=np.zeros([x_range[1]-x_range[0]+1,
                          y_range[1]-y_range[0]+1,
                          x_range[1]-x_range[0]+2*x_search+1,
                          y_range[1]-y_range[0]+2*y_search+1])
            
        ccorr_p=np.zeros([x_range[1]-x_range[0]+1,
                          y_range[1]-y_range[0]+1,
                          x_range[1]-x_range[0]+2*x_search+1,
                          y_range[1]-y_range[0]+2*y_search+1])
        
        for t0 in range(fbin+1,count-fbin-1):
            #Zero lag Autocorrelation calculation for the reference, +sample_time, -sample_time data
            n_data=d.data[t0-fbin-1:t0+fbin-1,
                          x_range[0]-x_search:x_range[1]+x_search+1,
                          y_range[0]-y_search:y_range[1]+y_search+1]
            acorr_pix_n=np.sqrt(np.sum((n_data-np.mean(n_data, axis=0))**2,axis=0))
            
            p_data=d.data[t0-fbin+1:t0+fbin+1,
                          x_range[0]-x_search:x_range[1]+x_search+1,
                          y_range[0]-y_search:y_range[1]+y_search+1]
            acorr_pix_p=np.sqrt(np.sum((p_data-np.mean(p_data, axis=0))**2,axis=0))
            
            ref_data=d.data[t0-fbin:t0+fbin,
                            x_range[0]:x_range[1]+1,
                            y_range[0]:y_range[1]+1]
            acorr_pix_ref=np.sqrt(np.sum((ref_data-np.mean(ref_data, axis=0))**2,axis=0))
            
            print((t0-fbin-1)/(count-2*(fbin-1))*100.)
            #Zero lag Crosscovariance calculation for the positive and negative sample time signal
            for i0 in range(x_range[1]-x_range[0]+1):
                for j0 in range(y_range[1]-y_range[0]+1):
                    
                    frame_ref=d.data[t0-fbin:t0+fbin,i0+x_range[0],j0+y_range[0]]
                    frame_ref=frame_ref-np.mean(frame_ref)
                    
                    for i1 in range(2*x_search+1):
                        for j1 in range(2*y_search+1):
                            frame_n=d.data[t0-fbin-1:t0+fbin-1,
                                           i1+i0+x_range[0]-x_search,
                                           j1+j0+y_range[0]-y_search]
                            frame_n=frame_n-np.mean(frame_n)
                            frame_p=d.data[t0-fbin+1:t0+fbin+1,
                                           i1+i0+x_range[0]-x_search,
                                           j1+j0+y_range[0]-y_search]
                            
                            frame_p=frame_p-np.mean(frame_p)
                            ccorr_n[i0,j0,i1,j1]=np.sum(frame_ref*frame_n)
                            ccorr_p[i0,j0,i1,j1]=np.sum(frame_ref*frame_p)
                            
            #Calculating the actual cross-correlation coefficients       
            for i0 in range(x_range[1]-x_range[0]+1):
                for j0 in range(y_range[1]-y_range[0]+1):
                    vcorr_p=np.zeros([2*x_search+1,2*y_search+1])
                    vcorr_n=np.zeros([2*x_search+1,2*y_search+1])
                    for i1 in range(2*x_search+1):
                        for j1 in range(2*y_search+1):
                            vcorr_p[i1,j1]=ccorr_p[i0,j0,i1,j1]/(acorr_pix_ref[i0,j0]*acorr_pix_p[i0+i1,j0+j1])
                            vcorr_n[i1,j1]=ccorr_n[i0,j0,i1,j1]/(acorr_pix_ref[i0,j0]*acorr_pix_n[i0+i1,j0+j1])
                    #Calculating the displacement in pixel coordinates
                    index_p=np.unravel_index(np.argmax(vcorr_p),shape=vcorr_p.shape)
                    index_n=np.unravel_index(np.argmax(vcorr_n),shape=vcorr_n.shape)
                    
                    cmax_p[i0,j0,t0]=vcorr_p[index_p]
                    cmax_n[i0,j0,t0]=vcorr_n[index_n]
                    #Transforming the coordinates into spatial coordinates
                    delta_index_p=np.asarray(index_p)-np.asarray([x_search,y_search])
                    delta_index_n=np.asarray(index_n)-np.asarray([x_search,y_search])
                                               
                    vpol_p[i0,j0,t0]=(coeff_z[0]*delta_index_p[0]+
                                      coeff_z[1]*delta_index_p[1])/sample_time                                        
                    vpol_n[i0,j0,t0]=(coeff_z[0]*delta_index_n[0]+
                                      coeff_z[1]*delta_index_n[1])/sample_time
                          
                    vrad_p[i0,j0,t0]=(coeff_r[0]*delta_index_p[0]+
                                      coeff_r[1]*delta_index_p[1])/sample_time                                        
                    vrad_n[i0,j0,t0]=(coeff_r[0]*delta_index_n[0]+
                                      coeff_r[1]*delta_index_n[1])/sample_time                       
        
                    #Calculating the average between the positive and negative shifted pixels
                    
                    vpol_tot = (vpol_p - vpol_n)/2.	 	# Average p and n correlations
                    vrad_tot = (vrad_p - vrad_n)/2.     # This is non causal
                    
        #Averaging in an fbin long time window
        for t0 in range(int(fbin/2),count-int(fbin/2)):
            vpol[:,:,t0] = np.mean(vpol_tot[:,:,t0-int(fbin/2):t0+int(fbin/2)], axis=2)
            vrad[:,:,t0] = np.mean(vrad_tot[:,:,t0-int(fbin/2):t0+int(fbin/2)], axis=2)
        
        results={'Time':d.coordinate('Time')[0][:,0,0],
                 'Radial velocity':vrad,
                 'Poloidal velocity':vpol,
                 'Maximum correlation p':cmax_p,
                 'Maximum correlation n':cmax_n}
        
        pickle.dump(results, open(pickle_filename, 'wb'))
    else:
        results=pickle.load(open(pickle_filename, 'rb'))
        print('Data loaded from pickle file.')
        
    if pdf:
        pdf=PdfPages(filename.replace('processed_data', 'plots')+'.pdf')
        
    if plot:
        plt.figure()
        plt.errorbar(results['Time'],
                     np.mean(results['Radial velocity'], axis=(0,1)),
                     np.sqrt(np.var(results['Radial velocity'], axis=(0,1))))
        plt.title('Radial velocity vs time')
        plt.xlabel('Time [s]')
        plt.ylabel('Radial velocity [m/s]')
        if pdf:
            pdf.savefig()
        
        plt.figure()
        plt.errorbar(results['Time'],
                     np.mean(results['Poloidal velocity'], axis=(0,1)),
                     np.sqrt(np.var(results['Poloidal velocity'], axis=(0,1))))
        
        plt.title('Poloidal velocity vs time')
        plt.xlabel('Time [s]')
        plt.ylabel('Poloidal velocity [m/s]')
        plt.pause(0.001)
        if pdf:
            pdf.savefig()
            
        plt.figure()
        plt.errorbar(results['Time'],
                     np.mean(results['Maximum correlation p'], axis=(0,1)),
                     np.sqrt(np.var(results['Maximum correlation p'], axis=(0,1))))
        
        plt.title('Maximum correlation p vs time')
        plt.xlabel('Time [s]')
        plt.ylabel('Maximum correlation p')
        plt.pause(0.001)
        if pdf:
            pdf.savefig()
            pdf.close()
            
    if return_results:
        return results