def create_pull_2d(pull_dict): mc = get_mc(pull_dict) pulls = get_pulls(mc) e_pdf = EnergyPDF.create(pull_dict["e_pdf_dict"]) weights = e_pdf.weight_mc(mc) x_bins = np.linspace(2., 6., n_ebins) ymax = pull_dict["season"]["sinDec bins"][-1] ymin = pull_dict["season"]["sinDec bins"][0] # y_bins = np.linspace(ymin, ymax, 41) y_bins = pull_dict["season"]["sinDec bins"] x_range = 0.5 * (x_bins[1:] + x_bins[:-1]) y_range = 0.5 * (y_bins[1:] + y_bins[:-1]) z_range = np.ones([len(x_range), len(y_range)]) for j, lower in enumerate(x_bins[:-1]): upper = x_bins[j + 1] mask = np.logical_and( mc["logE"] >= lower, mc["logE"] < upper ) cut_mc = mc[mask] for k, lower_dec in enumerate(y_bins[:-1]): upper_dec = y_bins[k + 1] bin_mask = np.logical_and( cut_mc["sinDec"] >= lower_dec, cut_mc["sinDec"] < upper_dec ) median_pull = weighted_quantile( pulls[mask][bin_mask], 0.5, weights[mask][bin_mask]) z_range[j][k] = np.log(median_pull) # x_range = np.array([0.] + list(x_range) + [10.]) # y_range = np.array([y_range[0]] + list(y_range) + [y_range[-1]]) save_path = pull_pickle(pull_dict) res = [x_range, y_range, z_range] with open(save_path, "wb") as f: Pickle.dump(res, f) print("Saved to", save_path) plot_path = save_path[:-3] + "pdf" ax = plt.subplot(111) X, Y = np.meshgrid(x_bins, y_bins) cbar = ax.pcolor(X, Y, z_range.T, cmap="seismic", vmax=1.0, vmin=-1.0) plt.colorbar(cbar, label="Log(Median Pull)") plt.ylabel(r"$\sin(\delta)$") plt.xlabel("Log(Energy proxy)") plt.savefig(plot_path) plt.close()
def __init__(self, pull_dict): self.season = pull_dict["season"] self.floor = BaseFloorClass.create(pull_dict) self.pull_dict = pull_dict self.pull_name = pull_pickle(pull_dict) # precision in gamma self.precision = pull_dict.get("gamma_precision", "flarestack")
def create_pull_0d_e(pull_dict): mc = get_mc(pull_dict) pulls = get_pulls(mc) e_pdf = EnergyPDF.create(pull_dict["e_pdf_dict"]) # gamma_precision = pull_dict.get('gamma_precision', 'flarestack') gamma_precision = pull_dict["gamma_precision"] default, bounds, name = e_pdf.return_energy_parameters() if name != ["gamma"]: raise Exception( "Trying to scan gamma parameter, " "but selected energy pdf gave the following parameters:" " {} {} {}".format(name, default, bounds)) res_dict = dict() x_range = np.array( sorted(list(get_gamma_support_points(precision=gamma_precision)))) y_range = [] for x in x_range: weights = e_pdf.weight_mc(mc, x) median_pull = weighted_quantile(pulls, 0.5, weights) y_range.append(median_pull) res_dict[x] = np.log(median_pull) y_range = np.array(y_range) save_path = pull_pickle(pull_dict) plot_path = save_path[:-3] + "pdf" # print x_range, y_range plt.figure() plt.plot(x_range, y_range) plt.axhline(1.0, linestyle="--") plt.ylabel("Median Pull") plt.xlabel(name[0]) plt.savefig(plot_path) plt.close() with open(save_path, "wb") as f: Pickle.dump(res_dict, f) print("Saved to", save_path)
def create_pull_1d(pull_dict): mc = get_mc(pull_dict) pulls = get_pulls(mc) e_pdf = EnergyPDF.create(pull_dict["e_pdf_dict"]) weights = e_pdf.weight_mc(mc) bins = np.linspace(2., 6., n_ebins) x_range = 0.5 * (bins[1:] + bins[:-1]) y_range = [] for j, lower in enumerate(bins[:-1]): upper = bins[j + 1] mask = np.logical_and( mc["logE"] >= lower, mc["logE"] < upper ) median_pull = weighted_quantile( pulls[mask], 0.5, weights[mask]) y_range.append(median_pull) x_range = np.array([0.] + list(x_range) + [10.]) y_range = np.array([y_range[0]] + list(y_range) + [y_range[-1]]) save_path = pull_pickle(pull_dict) res = [x_range, np.log(y_range)] with open(save_path, "wb") as f: Pickle.dump(res, f) print("Saved to", save_path) plot_path = save_path[:-3] + "pdf" plt.figure() plt.plot(x_range, y_range) plt.axhline(1.0, linestyle="--") plt.ylabel("Median Pull") plt.xlabel("Log(Energy Proxy/GeV)") plt.savefig(plot_path) plt.close()
def create_pull_2d_e(pull_dict): save_path = pull_pickle(pull_dict) base_dir = save_path[:-3] + "/" try: os.makedirs(base_dir) except OSError: pass mc = get_mc(pull_dict) pulls = get_pulls(mc) e_pdf = EnergyPDF.create(pull_dict["e_pdf_dict"]) gamma_precision = pull_dict.get("gamma_precision", "flarestack") x_bins = np.linspace(2.0, 6.0, n_ebins) ymax = pull_dict["season"]["sinDec bins"][-1] ymin = pull_dict["season"]["sinDec bins"][0] y_bins = np.linspace(ymin, ymax, 11) x_range = 0.5 * (x_bins[1:] + x_bins[:-1]) y_range = 0.5 * (y_bins[1:] + y_bins[:-1]) res_dict = dict() e_range = np.array( sorted(list(get_gamma_support_points(precision=gamma_precision)))) for e in e_range: z_range = np.ones([len(x_range), len(y_range)]) weights = e_pdf.weight_mc(mc, e) for j, lower in enumerate(x_bins[:-1]): upper = x_bins[j + 1] mask = np.logical_and(mc["logE"] >= lower, mc["logE"] < upper) cut_mc = mc[mask] for k, lower_dec in enumerate(y_bins[:-1]): upper_dec = y_bins[k + 1] bin_mask = np.logical_and(cut_mc["sinDec"] >= lower_dec, cut_mc["sinDec"] < upper_dec) median_pull = weighted_quantile(pulls[mask][bin_mask], 0.5, weights[mask][bin_mask]) z_range[j][k] = np.log(median_pull) res_dict[e] = [x_range, y_range, z_range] plot_path = base_dir + str(e) + ".pdf" ax = plt.subplot(111) X, Y = np.meshgrid(x_bins, y_bins) cbar = ax.pcolor(X, Y, z_range.T, cmap="seismic", vmax=1.0, vmin=-1.0) plt.colorbar(cbar, label="Log(Median Pull)") plt.ylabel(r"$\sin(\delta)$") plt.xlabel("Log(Energy proxy)") plt.savefig(plot_path) plt.close() save_path = pull_pickle(pull_dict) with open(save_path, "wb") as f: Pickle.dump(res_dict, f) print("Saved to", save_path)
def create_pull_1d_e(floor_dict): mc = get_mc(floor_dict) pulls = get_pulls(mc) e_pdf = EnergyPDF.create(floor_dict["e_pdf_dict"]) gamma_precision = floor_dict.get("gamma_precision", "flarestack") default, bounds, name = e_pdf.return_energy_parameters() if name != ["gamma"]: raise Exception( "Trying to scan gamma parameter, " "but selected energy pdf gave the following parameters:" " {} {} {}".format(name, default, bounds)) e_range = np.array( sorted(list(get_gamma_support_points(precision=gamma_precision)))) bins = np.linspace(2.0, 6.0, 5) x_range = 0.5 * (bins[1:] + bins[:-1]) x_range = np.array([0.0] + list(x_range) + [10.0]) res_dict = dict() z_range = [] for e in sorted(e_range): weights = e_pdf.weight_mc(mc, e) vals = [] for j, lower in enumerate(bins[:-1]): upper = bins[j + 1] mask = np.logical_and(mc["logE"] >= lower, mc["logE"] < upper) median_pull = weighted_quantile(pulls[mask], 0.5, weights[mask]) vals.append(median_pull) vals = [vals[0]] + vals + [vals[-1]] z_range.append(vals) res_dict[e] = [x_range, np.log(vals)] z_range = np.array(z_range) # z_range = np.vstack((z_range.T[0], z_range.T)).T # # z_range = np.vstack((z_range.T, z_range.T[-1])).T save_path = pull_pickle(floor_dict) # res = [x_range, e_range, z_range] with open(save_path, "wb") as f: Pickle.dump(res_dict, f) print("Saved to", save_path) plot_path = save_path[:-3] + "pdf" ax = plt.subplot(111) X, Y = np.meshgrid(x_range, e_range) # cbar = ax.pcolor(X, Y, np.log(np.degrees(z_range.T)), cmap="viridis", ) cbar = ax.pcolor(X, Y, np.log(z_range), cmap="seismic", vmax=1.0, vmin=-1.0) plt.colorbar(cbar, label="Log(Median Pull)") plt.ylabel(name[0]) plt.xlabel("Log(Energy proxy)") plt.savefig(plot_path) plt.close()