def main() -> None: """ The main launcher logic, using a cuda streamer to stream from an IP camera Arguments: None Returns: None """ cuda_streamer = CUDAStreamer( "rtsp://*****:*****@10.199.51.222/axis-media/media.amp?streamprofile=H264-OpenCV-Optimized", 1920, 1080) streamer = Streamer(3030, False, (1920, 1080), frame_rate=30) while True: frame = cuda_streamer.get_image() streamer.update_frame(frame) if not streamer.is_streaming: streamer.start_streaming()
from flask_opencv_streamer.streamer import Streamer from cv2 import VideoCapture, waitKey port = 5000 require_login = False streamer = Streamer(port, require_login) cap = VideoCapture(0) print('Starting to read camera and host flask in port:', port) while True: success, frame = cap.read() streamer.update_frame(frame) if not streamer.is_streaming: streamer.start_streaming() waitKey(66)
def vision(): src = int(args['source']) if args['source'].isdigit() else args['source'] flip = args['flip'] rotate = args['rotate'] view = args['view'] debug = args['debug'] threshold = args['threshold'] if args['threshold'] < 50 else 0 angle_threshold = args['athreshold'] if 0 < args['athreshold'] < 30 else 0 filter_threshold = args[ 'fthreshold'] if 0 < args['fthreshold'] <= 0.8 else 0.5 net_table = args['networktables'] is_pi = args['pi'] crash = args['crash'] window_moved = False sequence = False frame = [] def capture_frame(frame, table, value): if value: cv2.imwrite('/tmp/gv_frame.jpg', frame), table.putBoolean('capture_frame', False) cap = cv2.VideoCapture(src) cap.set(cv2.CAP_PROP_FRAME_WIDTH, data['image-width']) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, data['image-height']) port1 = 3030 streamer = Streamer(port1, False) if net_table: nt.NetworkTables.initialize(server=data['server-ip']) camera_table = nt.NetworkTables.getTable("CameraPublisher") sub_table = camera_table.getSubTable("Camera") sub_table.getEntry("streams").setStringArray( ["mjpg:http://10.18.16.16:3030/video_feed"]) table = nt.NetworkTables.getTable('SmartDashboard') if table: print('table OK') table.putNumber('center_x', -1) table.putNumber('center_y', -1) table.putNumber('contours', -1) table.putNumber('targets', -1) table.putNumber('width', data['image-width']) table.putNumber('height', data['image-height']) table.putBoolean('capture_frame', False) table.addEntryListener(lambda table, key, value, isNew: capture_frame( frame, table, value), key='capture_frame') # values = {'vision_active': False} # table.addEntryListener(value_changed, key='vision_active') if debug: print( '----------------------------------------------------------------') print('Current Source: {}'.format(src)) print('View Flag: {}'.format(view)) print('Debug Flag: {}'.format(debug)) print('Threshold Value: {}'.format(threshold)) print('Angle Threshold Value: {}'.format(angle_threshold)) print('Network Tables Flag: {}'.format(net_table)) print( '----------------------------------------------------------------\n' ) v_focal_length = data['camera_matrix'][1][1] h_focal_length = data['camera_matrix'][0][0] lower_color = np.array([ data['lower-color-list'][0] - threshold, data['lower-color-list'][1], data['lower-color-list'][2] ]) # HSV to test: 0, 220, 25 upper_color = np.array([ data['upper-color-list'][0] + threshold, data['upper-color-list'][1], data['upper-color-list'][2] ]) center_coords = (int(data['image-width'] / 2), int(data['image-height'] / 2)) screen_c_x = data['image-width'] / 2 - 0.5 screen_c_y = data['image-height'] / 2 - 0.5 first_read = True rectangle_list = [] sorted_contours = [] average_coord_list = [] append = average_coord_list.append while True: fps = FPS().start() if crash: raise Exception('Get bamboozled...') start_time = time.time() biggest_contour_area = -1 best_center_average_coords = (-1, -1) index = -1 pitch = -999 yaw = -999 if view: if not first_read: key = cv2.waitKey(30) & 0xFF if key == ord('q'): break if sequence and key != ord(' '): continue first_read = False _, frame = cap.read() if frame is None: continue if flip: frame = cv2.flip(frame, -1) if rotate: frame = imutils.rotate_bound(frame, 90) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, lower_color, upper_color) # find contours from mask all_contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # remove super small or super big contours that exist due to light noise/objects filtered_contours = [ c for c in all_contours if 50 < cv2.contourArea(c) < 15000 ] filtered_contours_area = [ cv2.contourArea(c) for c in all_contours if 50 < cv2.contourArea(c) ] # find the contour with the biggest area so we can further remove contours created from light noise if len(all_contours) > 0: biggest_contour_area = max( [cv2.contourArea(c) for c in all_contours]) # create a contour list that removes contours smaller than the biggest * some constant filtered_contours = [ c for c in filtered_contours if cv2.contourArea(c) > filter_threshold * biggest_contour_area ] # sort contours by left to right, top to bottom if len(filtered_contours) > 1: bounding_boxes = [cv2.boundingRect(c) for c in filtered_contours] sorted_contours, _ = zip( *sorted(zip(filtered_contours, bounding_boxes), key=lambda b: b[1][0], reverse=False)) sorted_contours = list(sorted_contours) if len(sorted_contours) > 1: # gets ((cx, cy), (width, height), angle of rot) for each contour rectangle_list = [cv2.minAreaRect(c) for c in sorted_contours] for pos, rect in enumerate(rectangle_list): if biggest_contour_area < 10000: if -78 - angle_threshold < rect[ 2] < -74 + angle_threshold and pos != len( rectangle_list) - 1: if view: color = (0, 255, 255) box = np.int0(cv2.boxPoints(rect)) cv2.drawContours(frame, [box], 0, color, 2) # only add rect if the second rect is the correct angle if -16 - angle_threshold < rectangle_list[ pos + 1][2] < -12 + angle_threshold: if view: color = (0, 0, 255) rect2 = rectangle_list[pos + 1] box2 = np.int0(cv2.boxPoints(rect2)) cv2.drawContours(frame, [box2], 0, color, 2) cx = int( (rect[0][0] + rectangle_list[pos + 1][0][0]) / 2) cy = int( (rect[0][1] + rectangle_list[pos + 1][0][1]) / 2) append((cx, cy)) else: if pos != len(rectangle_list) - 1: if view: color = (0, 255, 255) box = np.int0(cv2.boxPoints(rect)) cv2.drawContours(frame, [box], 0, color, 2) rect2 = rectangle_list[pos + 1] box2 = np.int0(cv2.boxPoints(rect2)) color = (255, 255, 0) cv2.drawContours(frame, [box2], 0, color, 2) cx = int( (rect[0][0] + rectangle_list[pos + 1][0][0]) / 2) cy = int( (rect[0][1] + rectangle_list[pos + 1][0][1]) / 2) append((cx, cy)) if len(average_coord_list) == 1: best_center_average_coords = average_coord_list[index] index = 0 yaw = math.degrees( math.atan((best_center_average_coords[0] - screen_c_x) / h_focal_length)) pitch = math.degrees( math.atan((best_center_average_coords[1] - screen_c_y) / v_focal_length)) if view: cv2.line(frame, best_center_average_coords, center_coords, (0, 255, 0), 2) cv2.line(frame, best_center_average_coords, best_center_average_coords, (255, 0, 0), 5) elif len(average_coord_list) > 1: # finds c_x that is closest to the center of the center best_center_average_x = min( average_coord_list, key=lambda xy: abs(xy[0] - data['image-width'] / 2))[0] index = [coord[0] for coord in average_coord_list ].index(best_center_average_x) best_center_average_y = average_coord_list[index][1] best_center_average_coords = (best_center_average_x, best_center_average_y) yaw = math.degrees( math.atan((best_center_average_coords[0] - screen_c_x) / h_focal_length)) pitch = math.degrees( math.atan((best_center_average_coords[1] - screen_c_y) / v_focal_length)) if view: cv2.line(frame, best_center_average_coords, center_coords, (0, 255, 0), 2) for coord in average_coord_list: cv2.line(frame, coord, coord, (255, 0, 0), 5) new_h = 320 new_w = 240 resize = cv2.resize(frame, (new_w, new_h)) streamer.update_frame(resize) if not streamer.is_streaming: streamer.start_streaming() # if view: # cv2.imshow('Mask', mask) # cv2.imshow('Contour Window', frame) # if not window_moved: # cv2.moveWindow('Mask', 300, 250) # cv2.moveWindow('Contour Window', 1100, 250) # window_moved = True if cv2.waitKey(1) & 0xFF == ord('q'): break end_time = time.time() fps.update() fps.stop() curr_fps = fps.fps() if debug: sys.stdout.write(""" ========================================================= Filtered Contour Area: {} Sorted Contour Area: {} Biggest Contour Area: {} Rectangle List: {} Contours: {} Targets: {} Avg_center_list: {} Best Center Coords: {} Index: {} Pitch: {} Yaw: {} FPS: {} Execute time: {}\r""".format( filtered_contours_area, [cv2.contourArea(contour) for contour in sorted_contours], biggest_contour_area, len(rectangle_list), len(sorted_contours), len(average_coord_list), average_coord_list, best_center_average_coords, index, pitch, yaw, curr_fps, end_time - start_time)) if net_table: table.putNumber('center_x', best_center_average_coords[0]) table.putNumber('center_y', best_center_average_coords[1]) table.putNumber('yaw', yaw) table.putNumber('contours', len(sorted_contours)) table.putNumber('targets', len(average_coord_list)) table.putNumber('pitch', pitch) table.putNumber('fps', curr_fps) filtered_contours.clear() sorted_contours.clear() rectangle_list.clear() average_coord_list.clear() cap.release() cv2.destroyAllWindows()
from flask_opencv_streamer.streamer import Streamer import cv2 from mss import mss from PIL import Image import numpy as np mon = {'top': 0, 'left': 0, 'width': 1920, 'height': 1080} sct = mss() port = 3030 require_login = False streamer = Streamer(port, require_login) # Open video device 0 video_capture = cv2.VideoCapture(0) while True: _, frame = video_capture.read() sct.get_pixels(mon) img = Image.frombytes('RGB', (sct.width, sct.height), sct.image) streamer.update_frame(np.array(img)) if not streamer.is_streaming: streamer.start_streaming() cv2.waitKey(30)
class CCTVMain(QMainWindow): def __init__(self): super().__init__() uic.loadUi("QTui\cctv_main.ui", self) self.video = None self.location = "CCTV 위치" self.lat = None self.lon = None self.CCTVOption = CCTVOption(self) self.sensor = 10 self.fps = 60 self.count = 0 self.fourcc = cv2.VideoWriter_fourcc(*'mp4v') self.action_setting.triggered.connect(self.exec_setting) def start(self): self.location = self.CCTVOption.set_location if self.location is None: QMessageBox.about(self, "정보", "위치를 입력해주세요.") return self.exec_setting() try: self.setCamera = cv2.VideoCapture(0) _, self.img_o = self.setCamera.read() self.img_o = cv2.cvtColor(self.img_o, cv2.COLOR_RGB2GRAY) except: QMessageBox.about(self, "정보", "카메라를 확인해주세요.") return self.main_record = True self.event_record = False self.event_switch = False self.event_status = False self.timer = QTimer() self.timer.timeout.connect(self.nextframe) self.timer.start(1000 / self.fps) port = 3030 require_login = False self.streamer = Streamer(port, require_login) def stop(self): self.main_video.release() self.setCamera.release() self.imgLabel.setPixmap(QPixmap.fromImage(QImage())) self.timer.stop() def nextframe(self): _, self.cam = self.setCamera.read() self.streamer.update_frame(self.cam) if not self.streamer.is_streaming: self.streamer.start_streaming() self.cam = cv2.cvtColor(self.cam, cv2.COLOR_BGR2RGB) self.img_p = cv2.cvtColor(self.cam, cv2.COLOR_RGB2GRAY) self.write_main() self.compare() self.img_o = self.img_p.copy() img = QImage(self.cam, self.cam.shape[1], self.cam.shape[0], QImage.Format_RGB888) pix = QPixmap.fromImage(img) self.imgLabel.setPixmap(pix) def write_main(self): cam = cv2.cvtColor(self.cam, cv2.COLOR_BGR2RGB) if self.main_record == True: self.main_record = False logdate = datetime.datetime.now().strftime("%y-%m-%d_%H%M%S") self.main_video = cv2.VideoWriter( "video\MainVideo_" + logdate + ".mp4", self.fourcc, 20, (self.cam.shape[1], self.cam.shape[0])) if self.main_record == False: self.main_video.write(cam) def write_event(self): self.cam_rec = cv2.cvtColor(self.cam, cv2.COLOR_BGR2RGB) if (self.event_record == True) & (self.event_switch == False): self.event_record = False self.event_switch = True self.event_status = True logdate = datetime.datetime.now().strftime("%y-%m-%d_%H%M%S") self.write_log() self.event_video = cv2.VideoWriter( "video\event\EventVideo_" + logdate + ".mp4", self.fourcc, 20, (self.cam.shape[1], self.cam.shape[0])) if self.event_switch == True: self.event_video.write(self.cam_rec) def write_log(self): date = datetime.datetime.utcnow().isoformat() self.lat = self.CCTVOption.set_lat self.lon = self.CCTVOption.set_lon log = open('log\detect.log', 'a') log.write(self.location + " " + self.lat + " " + self.lon + " " + date + " -\n") log.close() def compare(self): self.sensor = self.CCTVOption.set_sensor value = np.sum( (self.img_o.astype("float") - self.img_p.astype("float"))**2) value /= float(self.img_o.shape[0] * self.img_p.shape[1]) if (value >= self.sensor): self.event_record = True self.count = 0 if (value < self.sensor): self.event_record = False if self.event_status == True: self.event_status = False self.event_timer() self.write_event() def event_timer(self): timer = threading.Timer(1, self.event_timer) timer.start() self.count += 1 if self.count > 9: timer.cancel() self.event_video.release() self.event_switch = False def exec_setting(self): self.CCTVOption.exec_()
faces = face_detector.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5, minSize=(int(minW), int(minH))) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) count += 1 # Save the captured image into the datasets folder cv2.imwrite( "dataset/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y + h, x:x + w]) cv2.putText(img, str(count) + " of " + str(30), (x + 5, y + h - 5), font, 1, (255, 255, 0), 1) streamer.update_frame(img) if not streamer.is_streaming: streamer.start_streaming() k = cv2.waitKey(100) & 0xff # Press 'ESC' for exiting video if k == 27: break elif count >= 30: # Take 30 face sample and stop video img = cv2.imread("done.jpg", 1) cv2.imshow('image', img) streamer.update_frame(img) break # Do a bit of cleanup print("\n [+]Shutting down Cam") cam.release() cv2.destroyAllWindows()
cv2.imwrite('fire.png', frame) #send_message('fire') else: # if prediction for FIRE was FALSE, draw RED contour for superpixel cv2.drawContours(small_frame, contours, -1, (0, 0, 2255), 1) # stop the timer and convert to ms. (to see how long processing and display takes) stop_t = ((cv2.getTickCount() - start_t) / cv2.getTickFrequency()) * 1000 # image display and key handling #cv2.imshow(windowName, small_frame); # wait fps time or less depending on processing time taken (e.g. 1000ms / 25 fps = 40 ms) frame_count = frame_count + 1 streamer.update_frame(small_frame) if not streamer.is_streaming: streamer.start_streaming() cv2.waitKey(30) key = cv2.waitKey(max(2, frame_time - int(math.ceil(stop_t)))) & 0xFF if (key == 27): keepProcessing = False elif (key == ord('f')): cv2.setWindowProperty(windowName, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) cv2.destroyAllWindows()
def main(blur_level=(69, 69)): streamer = Streamer(3000, False) # Generate blank images by_type = np.zeros((1080, 1920, 4), np.uint8) bg = cv2.imread("./Peeples blank.png") key_type = cv2.imread("./key_type.png") # Make sure all images have alpha channel bg = cv2.cvtColor(bg, cv2.COLOR_RGB2RGBA) key_type = cv2.cvtColor(key_type, cv2.COLOR_RGB2RGBA) # Kafka stuff -- going to start reading this in real-time consumer = Consumer({ "bootstrap.servers": "sckafka1.simcenter.utc.edu", "group.id": "gradient-overlay", }) consumer.subscribe(["cuip_vision_events"]) last_write_time = time.time() while True: try: consumer.poll(1) msg = consumer.consume() if msg is not None: for m in msg: if m.error(): continue j = json.loads(m.value()) if j["camera_id"] != "mlk-peeples-cam-3": continue current = 0 next = 1 while next < (len(j["locations"]) - 1): x1 = int(j["locations"][current]["coords"][0]) y1 = int(j["locations"][current]["coords"][1]) x2 = int(j["locations"][next]["coords"][0]) y2 = int(j["locations"][next]["coords"][1]) cv2.line( by_type, get_center(j["locations"][0]["coords"]), get_center(j["locations"][-1]["coords"]), get_color_from_label(j["label"]), 2, ) del x1, y1, x2, y2 current += 1 next += 1 if time.time() - last_write_time >= 15: # write every 15 seconds print("Writing to disk") output = cv2.GaussianBlur(by_type.copy(), blur_level, 0) output = cv2.add(output, bg) rows, cols = key_type.shape[:2] output[0:rows, 0:cols] = key_type cv2.imwrite("by_type.png", output) del output last_write_time = time.time() streamer.update_frame( cv2.add(cv2.GaussianBlur(by_type, blur_level, 0), bg)) if not streamer.is_streaming: streamer.start_streaming() time.sleep(1 / 30) except KeyboardInterrupt: break by_type = cv2.GaussianBlur(by_type, blur_level, 0) by_type = cv2.add(by_type, bg) rows, cols = key_type.shape[:2] by_type[0:rows, 0:cols] = key_type cv2.imwrite("by_type.png", by_type) consumer.close() cv2.destroyAllWindows()