def visualize_distance_map(distance_map: DistanceMap, agent_handle: int = 0): if agent_handle >= distance_map.get().shape[0]: print("Error: agent_handle cannot be larger than actual number of agents") return # take min value of all 4 directions min_distance_map = np.min(distance_map.get(), axis=3) plt.imshow(min_distance_map[agent_handle][:][:]) plt.show()
def _cheat_expert(self, start_pos, orientation, agentID): """ return the next position when expert is standing on a junction """ fake_env = copy.deepcopy(self.env) fake_env.agents = [fake_env.agents[agentID]] # if fake_env.agents[0].position is not None: fake_env.agents[0].position = start_pos fake_env.agents[0].direction = orientation fake_env.agents[0].handle = 0 # else: fake_env.agents[0].initial_position = start_pos fake_env.agents[0].initial_direction = orientation distance_map = DistanceMap(env_width=self.env.rail.width, env_height=self.env.rail.height, agents=fake_env.agents) distance_map.reset(fake_env.agents, self.env.rail) path = get_shortest_paths(distance_map, agent_handle=0) return path[0]
class RailEnv(Environment): """ RailEnv environment class. RailEnv is an environment inspired by a (simplified version of) a rail network, in which agents (trains) have to navigate to their target locations in the shortest time possible, while at the same time cooperating to avoid bottlenecks. The valid actions in the environment are: - 0: do nothing (continue moving or stay still) - 1: turn left at switch and move to the next cell; if the agent was not moving, movement is started - 2: move to the next cell in front of the agent; if the agent was not moving, movement is started - 3: turn right at switch and move to the next cell; if the agent was not moving, movement is started - 4: stop moving Moving forward in a dead-end cell makes the agent turn 180 degrees and step to the cell it came from. The actions of the agents are executed in order of their handle to prevent deadlocks and to allow them to learn relative priorities. Reward Function: It costs each agent a step_penalty for every time-step taken in the environment. Independent of the movement of the agent. Currently all other penalties such as penalty for stopping, starting and invalid actions are set to 0. alpha = 1 beta = 1 Reward function parameters: - invalid_action_penalty = 0 - step_penalty = -alpha - global_reward = beta - epsilon = avoid rounding errors - stop_penalty = 0 # penalty for stopping a moving agent - start_penalty = 0 # penalty for starting a stopped agent Stochastic malfunctioning of trains: Trains in RailEnv can malfunction if they are halted too often (either by their own choice or because an invalid action or cell is selected. Every time an agent stops, an agent has a certain probability of malfunctioning. Malfunctions of trains follow a poisson process with a certain rate. Not all trains will be affected by malfunctions during episodes to keep complexity managable. TODO: currently, the parameters that control the stochasticity of the environment are hard-coded in init(). For Round 2, they will be passed to the constructor as arguments, to allow for more flexibility. """ alpha = 1.0 beta = 1.0 # Epsilon to avoid rounding errors epsilon = 0.01 invalid_action_penalty = 0 # previously -2; GIACOMO: we decided that invalid actions will carry no penalty step_penalty = -1 * alpha global_reward = 1 * beta stop_penalty = 0 # penalty for stopping a moving agent start_penalty = 0 # penalty for starting a stopped agent def __init__( self, width, height, rail_generator: RailGenerator = random_rail_generator(), schedule_generator: ScheduleGenerator = random_schedule_generator( ), number_of_agents=1, obs_builder_object: ObservationBuilder = GlobalObsForRailEnv(), malfunction_generator_and_process_data=no_malfunction_generator(), remove_agents_at_target=True, random_seed=1, record_steps=False): """ Environment init. Parameters ---------- rail_generator : function The rail_generator function is a function that takes the width, height and agents handles of a rail environment, along with the number of times the env has been reset, and returns a GridTransitionMap object and a list of starting positions, targets, and initial orientations for agent handle. The rail_generator can pass a distance map in the hints or information for specific schedule_generators. Implementations can be found in flatland/envs/rail_generators.py schedule_generator : function The schedule_generator function is a function that takes the grid, the number of agents and optional hints and returns a list of starting positions, targets, initial orientations and speed for all agent handles. Implementations can be found in flatland/envs/schedule_generators.py width : int The width of the rail map. Potentially in the future, a range of widths to sample from. height : int The height of the rail map. Potentially in the future, a range of heights to sample from. number_of_agents : int Number of agents to spawn on the map. Potentially in the future, a range of number of agents to sample from. obs_builder_object: ObservationBuilder object ObservationBuilder-derived object that takes builds observation vectors for each agent. remove_agents_at_target : bool If remove_agents_at_target is set to true then the agents will be removed by placing to RailEnv.DEPOT_POSITION when the agent has reach it's target position. random_seed : int or None if None, then its ignored, else the random generators are seeded with this number to ensure that stochastic operations are replicable across multiple operations """ super().__init__() self.malfunction_generator, self.malfunction_process_data = malfunction_generator_and_process_data self.rail_generator: RailGenerator = rail_generator self.schedule_generator: ScheduleGenerator = schedule_generator self.rail: Optional[GridTransitionMap] = None self.width = width self.height = height self.remove_agents_at_target = remove_agents_at_target self.rewards = [0] * number_of_agents self.done = False self.obs_builder = obs_builder_object self.obs_builder.set_env(self) self._max_episode_steps: Optional[int] = None self._elapsed_steps = 0 self.dones = dict.fromkeys( list(range(number_of_agents)) + ["__all__"], False) self.obs_dict = {} self.rewards_dict = {} self.dev_obs_dict = {} self.dev_pred_dict = {} self.agents: List[EnvAgent] = [] self.number_of_agents = number_of_agents self.num_resets = 0 self.distance_map = DistanceMap(self.agents, self.height, self.width) self.action_space = [5] self._seed() self._seed() self.random_seed = random_seed if self.random_seed: self._seed(seed=random_seed) self.valid_positions = None # global numpy array of agents position, True means that there is an agent at that cell self.agent_positions: np.ndarray = np.full((height, width), False) # save episode timesteps ie agent positions, orientations. (not yet actions / observations) self.record_steps = record_steps # whether to save timesteps self.cur_episode = [] # save timesteps in here def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) random.seed(seed) return [seed] # no more agent_handles def get_agent_handles(self): return range(self.get_num_agents()) def get_num_agents(self) -> int: return len(self.agents) def add_agent(self, agent): """ Add static info for a single agent. Returns the index of the new agent. """ self.agents.append(agent) return len(self.agents) - 1 def set_agent_active(self, agent: EnvAgent): if agent.status == RailAgentStatus.READY_TO_DEPART and self.cell_free( agent.initial_position): agent.status = RailAgentStatus.ACTIVE self._set_agent_to_initial_position(agent, agent.initial_position) def reset_agents(self): """ Reset the agents to their starting positions """ for agent in self.agents: agent.reset() self.active_agents = [i for i in range(len(self.agents))] @staticmethod def compute_max_episode_steps( width: int, height: int, ratio_nr_agents_to_nr_cities: float = 20.0) -> int: """ compute_max_episode_steps(width, height, ratio_nr_agents_to_nr_cities, timedelay_factor, alpha) The method computes the max number of episode steps allowed Parameters ---------- width : int width of environment height : int height of environment ratio_nr_agents_to_nr_cities : float, optional number_of_agents/number_of_cities Returns ------- max_episode_steps: int maximum number of episode steps """ timedelay_factor = 4 alpha = 2 return int(timedelay_factor * alpha * (width + height + ratio_nr_agents_to_nr_cities)) def action_required(self, agent): """ Check if an agent needs to provide an action Parameters ---------- agent: RailEnvAgent Agent we want to check Returns ------- True: Agent needs to provide an action False: Agent cannot provide an action """ return (agent.status == RailAgentStatus.READY_TO_DEPART or (agent.status == RailAgentStatus.ACTIVE and np.isclose( agent.speed_data['position_fraction'], 0.0, rtol=1e-03))) def reset(self, regenerate_rail: bool = True, regenerate_schedule: bool = True, activate_agents: bool = False, random_seed: bool = None) -> (Dict, Dict): """ reset(regenerate_rail, regenerate_schedule, activate_agents, random_seed) The method resets the rail environment Parameters ---------- regenerate_rail : bool, optional regenerate the rails regenerate_schedule : bool, optional regenerate the schedule and the static agents activate_agents : bool, optional activate the agents random_seed : bool, optional random seed for environment Returns ------- observation_dict: Dict Dictionary with an observation for each agent info_dict: Dict with agent specific information """ if random_seed: self._seed(random_seed) optionals = {} if regenerate_rail or self.rail is None: rail, optionals = self.rail_generator(self.width, self.height, self.number_of_agents, self.num_resets, self.np_random) self.rail = rail self.height, self.width = self.rail.grid.shape # Do a new set_env call on the obs_builder to ensure # that obs_builder specific instantiations are made according to the # specifications of the current environment : like width, height, etc self.obs_builder.set_env(self) if optionals and 'distance_map' in optionals: self.distance_map.set(optionals['distance_map']) if regenerate_schedule or regenerate_rail or self.get_num_agents( ) == 0: agents_hints = None if optionals and 'agents_hints' in optionals: agents_hints = optionals['agents_hints'] schedule = self.schedule_generator(self.rail, self.number_of_agents, agents_hints, self.num_resets, self.np_random) self.agents = EnvAgent.from_schedule(schedule) if agents_hints and 'city_orientations' in agents_hints: ratio_nr_agents_to_nr_cities = self.get_num_agents() / len( agents_hints['city_orientations']) self._max_episode_steps = self.compute_max_episode_steps( width=self.width, height=self.height, ratio_nr_agents_to_nr_cities=ratio_nr_agents_to_nr_cities) else: self._max_episode_steps = self.compute_max_episode_steps( width=self.width, height=self.height) self.agent_positions = np.zeros( (self.height, self.width), dtype=int) - 1 # Reset agents to initial self.reset_agents() for agent in self.agents: # Induce malfunctions if activate_agents: self.set_agent_active(agent) self._break_agent(agent) if agent.malfunction_data["malfunction"] > 0: agent.speed_data[ 'transition_action_on_cellexit'] = RailEnvActions.DO_NOTHING # Fix agents that finished their malfunction self._fix_agent_after_malfunction(agent) self.num_resets += 1 self._elapsed_steps = 0 # TODO perhaps dones should be part of each agent. self.dones = dict.fromkeys( list(range(self.get_num_agents())) + ["__all__"], False) # Reset the state of the observation builder with the new environment self.obs_builder.reset() self.distance_map.reset(self.agents, self.rail) # Reset the malfunction generator self.malfunction_generator(reset=True) info_dict: Dict = { 'action_required': { i: self.action_required(agent) for i, agent in enumerate(self.agents) }, 'malfunction': { i: agent.malfunction_data['malfunction'] for i, agent in enumerate(self.agents) }, 'speed': { i: agent.speed_data['speed'] for i, agent in enumerate(self.agents) }, 'status': {i: agent.status for i, agent in enumerate(self.agents)} } # Return the new observation vectors for each agent observation_dict: Dict = self._get_observations() return observation_dict, info_dict def _fix_agent_after_malfunction(self, agent: EnvAgent): """ Updates agent malfunction variables and fixes broken agents Parameters ---------- agent """ # Ignore agents that are OK if self._is_agent_ok(agent): return # Reduce number of malfunction steps left if agent.malfunction_data['malfunction'] > 1: agent.malfunction_data['malfunction'] -= 1 return # Restart agents at the end of their malfunction agent.malfunction_data['malfunction'] -= 1 if 'moving_before_malfunction' in agent.malfunction_data: agent.moving = agent.malfunction_data['moving_before_malfunction'] return def _break_agent(self, agent: EnvAgent): """ Malfunction generator that breaks agents at a given rate. Parameters ---------- agent """ malfunction: Malfunction = self.malfunction_generator( agent, self.np_random) if malfunction.num_broken_steps > 0: agent.malfunction_data[ 'malfunction'] = malfunction.num_broken_steps agent.malfunction_data['moving_before_malfunction'] = agent.moving agent.malfunction_data['nr_malfunctions'] += 1 return def step(self, action_dict_: Dict[int, RailEnvActions]): """ Updates rewards for the agents at a step. Parameters ---------- action_dict_ : Dict[int,RailEnvActions] """ self._elapsed_steps += 1 # If we're done, set reward and info_dict and step() is done. if self.dones["__all__"]: self.rewards_dict = {} info_dict = { "action_required": {}, "malfunction": {}, "speed": {}, "status": {}, } for i_agent, agent in enumerate(self.agents): self.rewards_dict[i_agent] = self.global_reward info_dict["action_required"][i_agent] = False info_dict["malfunction"][i_agent] = 0 info_dict["speed"][i_agent] = 0 info_dict["status"][i_agent] = agent.status return self._get_observations( ), self.rewards_dict, self.dones, info_dict # Reset the step rewards self.rewards_dict = dict() info_dict = { "action_required": {}, "malfunction": {}, "speed": {}, "status": {}, } have_all_agents_ended = True # boolean flag to check if all agents are done for i_agent, agent in enumerate(self.agents): # Reset the step rewards self.rewards_dict[i_agent] = 0 # Induce malfunction before we do a step, thus a broken agent can't move in this step self._break_agent(agent) # Perform step on the agent self._step_agent(i_agent, action_dict_.get(i_agent)) # manage the boolean flag to check if all agents are indeed done (or done_removed) have_all_agents_ended &= (agent.status in [ RailAgentStatus.DONE, RailAgentStatus.DONE_REMOVED ]) # Build info dict info_dict["action_required"][i_agent] = self.action_required(agent) info_dict["malfunction"][i_agent] = agent.malfunction_data[ 'malfunction'] info_dict["speed"][i_agent] = agent.speed_data['speed'] info_dict["status"][i_agent] = agent.status # Fix agents that finished their malfunction such that they can perform an action in the next step self._fix_agent_after_malfunction(agent) # Check for end of episode + set global reward to all rewards! if have_all_agents_ended: self.dones["__all__"] = True self.rewards_dict = { i: self.global_reward for i in range(self.get_num_agents()) } if (self._max_episode_steps is not None) and (self._elapsed_steps >= self._max_episode_steps): self.dones["__all__"] = True for i_agent in range(self.get_num_agents()): self.dones[i_agent] = True if self.record_steps: self.record_timestep() return self._get_observations( ), self.rewards_dict, self.dones, info_dict def _step_agent(self, i_agent, action: Optional[RailEnvActions] = None): """ Performs a step and step, start and stop penalty on a single agent in the following sub steps: - malfunction - action handling if at the beginning of cell - movement Parameters ---------- i_agent : int action_dict_ : Dict[int,RailEnvActions] """ agent = self.agents[i_agent] if agent.status in [ RailAgentStatus.DONE, RailAgentStatus.DONE_REMOVED ]: # this agent has already completed... return # agent gets active by a MOVE_* action and if c if agent.status == RailAgentStatus.READY_TO_DEPART: if action in [ RailEnvActions.MOVE_LEFT, RailEnvActions.MOVE_RIGHT, RailEnvActions.MOVE_FORWARD ] and self.cell_free(agent.initial_position): agent.status = RailAgentStatus.ACTIVE self._set_agent_to_initial_position(agent, agent.initial_position) self.rewards_dict[ i_agent] += self.step_penalty * agent.speed_data['speed'] return else: # TODO: Here we need to check for the departure time in future releases with full schedules self.rewards_dict[ i_agent] += self.step_penalty * agent.speed_data['speed'] return agent.old_direction = agent.direction agent.old_position = agent.position # if agent is broken, actions are ignored and agent does not move. # full step penalty in this case if agent.malfunction_data['malfunction'] > 0: self.rewards_dict[ i_agent] += self.step_penalty * agent.speed_data['speed'] return # Is the agent at the beginning of the cell? Then, it can take an action. # As long as the agent is malfunctioning or stopped at the beginning of the cell, # different actions may be taken! if np.isclose(agent.speed_data['position_fraction'], 0.0, rtol=1e-03): # No action has been supplied for this agent -> set DO_NOTHING as default if action is None: action = RailEnvActions.DO_NOTHING if action < 0 or action > len(RailEnvActions): print('ERROR: illegal action=', action, 'for agent with index=', i_agent, '"DO NOTHING" will be executed instead') action = RailEnvActions.DO_NOTHING if action == RailEnvActions.DO_NOTHING and agent.moving: # Keep moving action = RailEnvActions.MOVE_FORWARD if action == RailEnvActions.STOP_MOVING and agent.moving: # Only allow halting an agent on entering new cells. agent.moving = False self.rewards_dict[i_agent] += self.stop_penalty if not agent.moving and not (action == RailEnvActions.DO_NOTHING or action == RailEnvActions.STOP_MOVING): # Allow agent to start with any forward or direction action agent.moving = True self.rewards_dict[i_agent] += self.start_penalty # Store the action if action is moving # If not moving, the action will be stored when the agent starts moving again. if agent.moving: _action_stored = False _, new_cell_valid, new_direction, new_position, transition_valid = \ self._check_action_on_agent(action, agent) if all([new_cell_valid, transition_valid]): agent.speed_data['transition_action_on_cellexit'] = action _action_stored = True else: # But, if the chosen invalid action was LEFT/RIGHT, and the agent is moving, # try to keep moving forward! if (action == RailEnvActions.MOVE_LEFT or action == RailEnvActions.MOVE_RIGHT): _, new_cell_valid, new_direction, new_position, transition_valid = \ self._check_action_on_agent(RailEnvActions.MOVE_FORWARD, agent) if all([new_cell_valid, transition_valid]): agent.speed_data[ 'transition_action_on_cellexit'] = RailEnvActions.MOVE_FORWARD _action_stored = True if not _action_stored: # If the agent cannot move due to an invalid transition, we set its state to not moving self.rewards_dict[i_agent] += self.invalid_action_penalty self.rewards_dict[i_agent] += self.stop_penalty agent.moving = False # Now perform a movement. # If agent.moving, increment the position_fraction by the speed of the agent # If the new position fraction is >= 1, reset to 0, and perform the stored # transition_action_on_cellexit if the cell is free. if agent.moving: agent.speed_data['position_fraction'] += agent.speed_data['speed'] if agent.speed_data['position_fraction'] > 1.0 or np.isclose( agent.speed_data['position_fraction'], 1.0, rtol=1e-03): # Perform stored action to transition to the next cell as soon as cell is free # Notice that we've already checked new_cell_valid and transition valid when we stored the action, # so we only have to check cell_free now! # cell and transition validity was checked when we stored transition_action_on_cellexit! cell_free, new_cell_valid, new_direction, new_position, transition_valid = self._check_action_on_agent( agent.speed_data['transition_action_on_cellexit'], agent) # N.B. validity of new_cell and transition should have been verified before the action was stored! assert new_cell_valid assert transition_valid if cell_free: self._move_agent_to_new_position(agent, new_position) agent.direction = new_direction agent.speed_data['position_fraction'] = 0.0 # has the agent reached its target? if np.equal(agent.position, agent.target).all(): agent.status = RailAgentStatus.DONE self.dones[i_agent] = True self.active_agents.remove(i_agent) agent.moving = False self._remove_agent_from_scene(agent) else: self.rewards_dict[ i_agent] += self.step_penalty * agent.speed_data['speed'] else: # step penalty if not moving (stopped now or before) self.rewards_dict[ i_agent] += self.step_penalty * agent.speed_data['speed'] def _set_agent_to_initial_position(self, agent: EnvAgent, new_position: IntVector2D): """ Sets the agent to its initial position. Updates the agent object and the position of the agent inside the global agent_position numpy array Parameters ------- agent: EnvAgent object new_position: IntVector2D """ agent.position = new_position self.agent_positions[agent.position] = agent.handle def _move_agent_to_new_position(self, agent: EnvAgent, new_position: IntVector2D): """ Move the agent to the a new position. Updates the agent object and the position of the agent inside the global agent_position numpy array Parameters ------- agent: EnvAgent object new_position: IntVector2D """ agent.position = new_position self.agent_positions[agent.old_position] = -1 self.agent_positions[agent.position] = agent.handle def _remove_agent_from_scene(self, agent: EnvAgent): """ Remove the agent from the scene. Updates the agent object and the position of the agent inside the global agent_position numpy array Parameters ------- agent: EnvAgent object """ self.agent_positions[agent.position] = -1 if self.remove_agents_at_target: agent.position = None agent.status = RailAgentStatus.DONE_REMOVED def _check_action_on_agent(self, action: RailEnvActions, agent: EnvAgent): """ Parameters ---------- action : RailEnvActions agent : EnvAgent Returns ------- bool Is it a legal move? 1) transition allows the new_direction in the cell, 2) the new cell is not empty (case 0), 3) the cell is free, i.e., no agent is currently in that cell """ # compute number of possible transitions in the current # cell used to check for invalid actions new_direction, transition_valid = self.check_action(agent, action) new_position = get_new_position(agent.position, new_direction) new_cell_valid = ( np.array_equal( # Check the new position is still in the grid new_position, np.clip(new_position, [0, 0], [self.height - 1, self.width - 1])) and # check the new position has some transitions (ie is not an empty cell) self.rail.get_full_transitions(*new_position) > 0) # If transition validity hasn't been checked yet. if transition_valid is None: transition_valid = self.rail.get_transition( (*agent.position, agent.direction), new_direction) # only call cell_free() if new cell is inside the scene if new_cell_valid: # Check the new position is not the same as any of the existing agent positions # (including itself, for simplicity, since it is moving) cell_free = self.cell_free(new_position) else: # if new cell is outside of scene -> cell_free is False cell_free = False return cell_free, new_cell_valid, new_direction, new_position, transition_valid def record_timestep(self): ''' Record the positions and orientations of all agents in memory, in the cur_episode ''' list_agents_state = [] for i_agent in range(self.get_num_agents()): agent = self.agents[i_agent] # the int cast is to avoid numpy types which may cause problems with msgpack # in env v2, agents may have position None, before starting if agent.position is None: pos = (0, 0) else: pos = (int(agent.position[0]), int(agent.position[1])) # print("pos:", pos, type(pos[0])) list_agents_state.append([*pos, int(agent.direction)]) self.cur_episode.append(list_agents_state) def cell_free(self, position: IntVector2D) -> bool: """ Utility to check if a cell is free Parameters: -------- position : Tuple[int, int] Returns ------- bool is the cell free or not? """ return self.agent_positions[position] == -1 def check_action(self, agent: EnvAgent, action: RailEnvActions): """ Parameters ---------- agent : EnvAgent action : RailEnvActions Returns ------- Tuple[Grid4TransitionsEnum,Tuple[int,int]] """ transition_valid = None possible_transitions = self.rail.get_transitions( *agent.position, agent.direction) num_transitions = np.count_nonzero(possible_transitions) new_direction = agent.direction if action == RailEnvActions.MOVE_LEFT: new_direction = agent.direction - 1 if num_transitions <= 1: transition_valid = False elif action == RailEnvActions.MOVE_RIGHT: new_direction = agent.direction + 1 if num_transitions <= 1: transition_valid = False new_direction %= 4 if action == RailEnvActions.MOVE_FORWARD and num_transitions == 1: # - dead-end, straight line or curved line; # new_direction will be the only valid transition # - take only available transition new_direction = np.argmax(possible_transitions) transition_valid = True return new_direction, transition_valid def _get_observations(self): """ Utility which returns the observations for an agent with respect to environment Returns ------ Dict object """ self.obs_dict = self.obs_builder.get_many( list(range(self.get_num_agents()))) return self.obs_dict def get_valid_directions_on_grid(self, row: int, col: int) -> List[int]: """ Returns directions in which the agent can move Parameters: --------- row : int col : int Returns: ------- List[int] """ return Grid4Transitions.get_entry_directions( self.rail.get_full_transitions(row, col)) def get_full_state_msg(self) -> Packer: """ Returns state of environment in msgpack object """ grid_data = self.rail.grid.tolist() agent_data = [agent.to_agent() for agent in self.agents] malfunction_data: MalfunctionProcessData = self.malfunction_process_data msgpack.packb(grid_data, use_bin_type=True) msgpack.packb(agent_data, use_bin_type=True) msg_data = { "grid": grid_data, "agents": agent_data, "malfunction": malfunction_data } return msgpack.packb(msg_data, use_bin_type=True) def get_agent_state_msg(self) -> Packer: """ Returns agents information in msgpack object """ agent_data = [agent.to_agent() for agent in self.agents] msg_data = {"agents": agent_data} return msgpack.packb(msg_data, use_bin_type=True) def get_full_state_dist_msg(self) -> Packer: """ Returns environment information with distance map information as msgpack object """ grid_data = self.rail.grid.tolist() agent_data = [agent.to_agent() for agent in self.agents] msgpack.packb(grid_data, use_bin_type=True) msgpack.packb(agent_data, use_bin_type=True) distance_map_data = self.distance_map.get() malfunction_data: MalfunctionProcessData = self.malfunction_process_data msgpack.packb(distance_map_data, use_bin_type=True) msg_data = { "grid": grid_data, "agents": agent_data, "distance_map": distance_map_data, "malfunction": malfunction_data } return msgpack.packb(msg_data, use_bin_type=True) def set_full_state_msg(self, msg_data): """ Sets environment state with msgdata object passed as argument Parameters ------- msg_data: msgpack object """ data = msgpack.unpackb(msg_data, use_list=False, encoding='utf-8') self.rail.grid = np.array(data["grid"]) # agents are always reset as not moving if "agents_static" in data: self.agents = EnvAgent.load_legacy_static_agent( data["agents_static"]) else: self.agents = [EnvAgent(*d[0:12]) for d in data["agents"]] # setup with loaded data self.height, self.width = self.rail.grid.shape self.rail.height = self.height self.rail.width = self.width self.dones = dict.fromkeys( list(range(self.get_num_agents())) + ["__all__"], False) def set_full_state_dist_msg(self, msg_data): """ Sets environment grid state and distance map with msgdata object passed as argument Parameters ------- msg_data: msgpack object """ data = msgpack.unpackb(msg_data, use_list=False, encoding='utf-8') self.rail.grid = np.array(data["grid"]) # agents are always reset as not moving if "agents_static" in data: self.agents = EnvAgent.load_legacy_static_agent( data["agents_static"]) else: self.agents = [EnvAgent(*d[0:12]) for d in data["agents"]] if "distance_map" in data.keys(): self.distance_map.set(data["distance_map"]) # setup with loaded data self.height, self.width = self.rail.grid.shape self.rail.height = self.height self.rail.width = self.width self.dones = dict.fromkeys( list(range(self.get_num_agents())) + ["__all__"], False) def save(self, filename, save_distance_maps=False): """ Saves environment and distance map information in a file Parameters: --------- filename: string save_distance_maps: bool """ if save_distance_maps is True: if self.distance_map.get() is not None: if len(self.distance_map.get()) > 0: with open(filename, "wb") as file_out: file_out.write(self.get_full_state_dist_msg()) else: print( "[WARNING] Unable to save the distance map for this environment, as none was found !" ) else: print( "[WARNING] Unable to save the distance map for this environment, as none was found !" ) else: with open(filename, "wb") as file_out: file_out.write(self.get_full_state_msg()) def save_episode(self, filename): episode_data = self.cur_episode msgpack.packb(episode_data, use_bin_type=True) dict_data = {"episode": episode_data} # msgpack.packb(msg_data, use_bin_type=True) with open(filename, "wb") as file_out: file_out.write(msgpack.packb(dict_data)) def load(self, filename): """ Load environment with distance map from a file Parameters: ------- filename: string """ with open(filename, "rb") as file_in: load_data = file_in.read() self.set_full_state_dist_msg(load_data) def load_pkl(self, pkl_data): """ Load environment with distance map from a pickle file Parameters: ------- pkl_data: pickle file """ self.set_full_state_msg(pkl_data) def load_resource(self, package, resource): """ Load environment with distance map from a binary """ from importlib_resources import read_binary load_data = read_binary(package, resource) self.set_full_state_msg(load_data) def _exp_distirbution_synced(self, rate: float) -> float: """ Generates sample from exponential distribution We need this to guarantee synchronity between different instances with same seed. :param rate: :return: """ u = self.np_random.rand() x = -np.log(1 - u) * rate return x def _is_agent_ok(self, agent: EnvAgent) -> bool: """ Check if an agent is ok, meaning it can move and is not malfuncitoinig Parameters ---------- agent Returns ------- True if agent is ok, False otherwise """ return agent.malfunction_data['malfunction'] < 1
def __init__( self, width, height, rail_generator: RailGenerator = random_rail_generator(), schedule_generator: ScheduleGenerator = random_schedule_generator( ), number_of_agents=1, obs_builder_object: ObservationBuilder = GlobalObsForRailEnv(), malfunction_generator_and_process_data=no_malfunction_generator(), remove_agents_at_target=True, random_seed=1, record_steps=False): """ Environment init. Parameters ---------- rail_generator : function The rail_generator function is a function that takes the width, height and agents handles of a rail environment, along with the number of times the env has been reset, and returns a GridTransitionMap object and a list of starting positions, targets, and initial orientations for agent handle. The rail_generator can pass a distance map in the hints or information for specific schedule_generators. Implementations can be found in flatland/envs/rail_generators.py schedule_generator : function The schedule_generator function is a function that takes the grid, the number of agents and optional hints and returns a list of starting positions, targets, initial orientations and speed for all agent handles. Implementations can be found in flatland/envs/schedule_generators.py width : int The width of the rail map. Potentially in the future, a range of widths to sample from. height : int The height of the rail map. Potentially in the future, a range of heights to sample from. number_of_agents : int Number of agents to spawn on the map. Potentially in the future, a range of number of agents to sample from. obs_builder_object: ObservationBuilder object ObservationBuilder-derived object that takes builds observation vectors for each agent. remove_agents_at_target : bool If remove_agents_at_target is set to true then the agents will be removed by placing to RailEnv.DEPOT_POSITION when the agent has reach it's target position. random_seed : int or None if None, then its ignored, else the random generators are seeded with this number to ensure that stochastic operations are replicable across multiple operations """ super().__init__() self.malfunction_generator, self.malfunction_process_data = malfunction_generator_and_process_data self.rail_generator: RailGenerator = rail_generator self.schedule_generator: ScheduleGenerator = schedule_generator self.rail: Optional[GridTransitionMap] = None self.width = width self.height = height self.remove_agents_at_target = remove_agents_at_target self.rewards = [0] * number_of_agents self.done = False self.obs_builder = obs_builder_object self.obs_builder.set_env(self) self._max_episode_steps: Optional[int] = None self._elapsed_steps = 0 self.dones = dict.fromkeys( list(range(number_of_agents)) + ["__all__"], False) self.obs_dict = {} self.rewards_dict = {} self.dev_obs_dict = {} self.dev_pred_dict = {} self.agents: List[EnvAgent] = [] self.number_of_agents = number_of_agents self.num_resets = 0 self.distance_map = DistanceMap(self.agents, self.height, self.width) self.action_space = [5] self._seed() self._seed() self.random_seed = random_seed if self.random_seed: self._seed(seed=random_seed) self.valid_positions = None # global numpy array of agents position, True means that there is an agent at that cell self.agent_positions: np.ndarray = np.full((height, width), False) # save episode timesteps ie agent positions, orientations. (not yet actions / observations) self.record_steps = record_steps # whether to save timesteps self.cur_episode = [] # save timesteps in here